Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 174: 116581, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636394

RESUMEN

Naringenin is a flavonoid found in many fruits and herbs, most notably in grapefruits. In recent years, this compound and its derivatives have been of great interest due to their high biological activity, including fungicidal and bactericidal effects, also in relation to multidrug-resistant bacteria. Membrane interactions of naringenin oxime (NO) and its 7-O-alkyl (7-alkoxy) derivatives, such as methyl (7MENO), ethyl (7ETNO), isopropyl (7IPNO), n-butyl (7BUNO) and n-pentyl (7PENO) were studied. Thermotropic properties of model membranes were investigated via differential scanning calorimetry (DSC), the influence on lipid raft mimicking giant unilamellar vesicles (GUVs) via fluorescence microscopy, and membrane permeability via measuring calcein leakage from liposomes. Molecular calculations supplemented the study. The influence of naringenin oximes on two strains of multidrug resistant bacteria: Staphylococcus aureus KJ and Enterococcus faecalis 37VRE was also investigated. In DSC studies all compounds reduced the temperature and enthalpy of main phase transition and caused disappearing of the pretransition. NO was the least active. The reduction in the area of surface domains in GUVs was observed for NO. Compounds NO and 7BUNO resulted in very low secretion of calcein from liposomes (permeability < 3 %). The highest results were observed for 7MENO (88.4 %) and 7IPNO (78.5 %). When bacterial membrane permeability was investigated all compounds caused significant release of propidium iodide from S. aureus (31.6-87.0 % for concentration 128 µg/mL). In the case of E. faecalis, 7ETNO (75.7 %) and NO (28.8 %) were the most active. The rest of the tested compounds showed less activity (permeability < 13.9 %). The strong evidence was observed that antibacterial activity of the tested compounds may be associated with their interaction with bacterial membrane.


Asunto(s)
Membrana Celular , Flavanonas , Oximas , Staphylococcus aureus , Flavanonas/farmacología , Flavanonas/química , Oximas/farmacología , Oximas/química , Staphylococcus aureus/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Enterococcus faecalis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Liposomas Unilamelares/metabolismo , Liposomas Unilamelares/química , Rastreo Diferencial de Calorimetría , Permeabilidad de la Membrana Celular/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
2.
Antioxidants (Basel) ; 10(5)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064972

RESUMEN

The antioxidant activity of beers comes mainly from phenolic compounds and melanoidins. The aim of this research was to evaluate the effect of technological operations, especially the ethanol fermentation process using top fermentation brewer's yeast Saccharomyces cerevisiae, on the antioxidant activity of dark dry hopped beers with a high xanthohumol content. Four beers were produced using different varieties of hops. The polyphenol content during beer processing increased at the stage of hopping and fermentation, while it decreased during aging. The ability to reduce iron ions increased for all beers compared to hopped wort. The opposite tendency was noted for the antioxidant capacity expressed as the ability to reduce the radical cation ABTS•+ generated from 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid). Fermentation and aging caused a decrease in beer color intensity. The content of 5-hydroxymethylfurfural (5-HMF) increased with the color intensity of wort, therefore in beers no presence of 5-HMF was observed. The beers were characterized by a distinctly high content of xanthohumol in the range of 1.77-3.83 mg/L and 0.85-1.19 mg/L of isoxanthohumol. The content of prenylflavonoids and bitterness of beer depended on the variety of hops used.

3.
Molecules ; 25(16)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785151

RESUMEN

New antimicrobial agents are needed to address infections caused by multidrug-resistant bacteria. Here, we are reporting novel O-alkyl derivatives of naringenin and their oximes, including novel compounds with a naringenin core and O-hexyl chains, showing activity against clinical strains of clarithromycin-resistant Helicobacter pylori, vancomycin-resistant Enterococcus faecalis, methicillin-resistant Staphylococcus aureus, and beta-lactam-resistant Acinetobacter baumannii and Klebsiella pneumoniae. The minimum inhibitory concentrations (MICs), which provide a quantitative measure of antimicrobial activity, were in the low microgram range for the selected compounds. Checkerboard assays for the most active compounds in combination with antibiotics revealed interactions that varied from synergistic to neutral.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Flavanonas/química , Oximas/química , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/aislamiento & purificación , Antibacterianos/síntesis química , Antibacterianos/química , Flavanonas/síntesis química , Flavanonas/farmacología , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/aislamiento & purificación , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad
4.
Molecules ; 25(14)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668610

RESUMEN

Substances that alter insect behavior have attracted a lot of attention as potential crop protection agents. Naringenin (5,7,4'-trihydroxyflavanone) is a naturally occurring bioactive flavanone. We evaluated the influence of naringenin on aphid activities during individual phases of probing and feeding and the effect of structural modifications of naringenin on its activity towards aphids. We monitored the probing behavior of Myzus persicae (Sulz.) (Hemiptera: Aphididae) using the Electrical Penetration Graph (EPG) technique. The chemical modifications were the substitution of hydrogen atoms with methyl, ethyl or pentyl groups and the replacement of the carbonyl group in naringenin and its derivatives with an oxime moiety. Depending on the substituents, the activity of naringenin-derived compounds varied in potency and mode of action. Naringenin was an attractant of moderate activity, which enhanced sap ingestion. The naringenin derivative with two methyl groups-7,4'-di-O-methylnaringenin-was a deterrent, which hindered aphid probing in non-phloem tissues. Naringenin oxime derivatives with methyl substituents-7,4'-di-O-methylnaringenin oxime, 7-O-methylnaringenin oxime, and 5,7,4'-tri-O-methylnaringenin oxime-and the derivative with a pentyl substituent-7-O-pentylnaringenin oxime-were strong attractants which stimulated aphid probing in non-phloem tissues and the ingestion of phloem sap.


Asunto(s)
Áfidos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Flavanonas , Insecticidas , Animales , Flavanonas/química , Flavanonas/toxicidad , Insecticidas/química , Insecticidas/toxicidad , Estructura Molecular , Relación Estructura-Actividad
5.
Molecules ; 24(22)2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31731596

RESUMEN

A series of 18 aminochalcone derivatives were obtained in yields of 21.5-88.6% by applying the classical Claisen-Schmidt reaction. Compounds 4-9, 14 and 16-18 with 4-ethyl, 4-carboxy-, 4-benzyloxy- and 4-benzyloxy-3-methoxy groups were novel, not previously described in the scientific literature. To determine the biological properties of the synthesized compounds, anticancer and antimicrobial activity assays were performed. Antiproliferative potential was evaluated on four different human colon cancer cell lines-HT-29, LS180, LoVo and LoVo/DX -using the SRB assay and compared with green monkey kidney fibroblasts COS7. Anticancer activity was described as the IC50 value. The best results were observed for 2'-aminochalcone (1), 3'-aminochalcone (2) and 4'-aminochalcone (3) (IC50 = 1.43-1.98 µg·mL-1) against the HT-29 cell line and for amino-nitrochalcones 10-12 (IC50 = 2.77-3.42 µg·mL-1) against the LoVo and LoVo/DX cell lines. Moreover, the antimicrobial activity of all derivatives was evaluated on two strains of bacteria: Escherichia coli ATCC10536 and Staphylococcus aureus DSM799, the yeast strain Candida albicans DSM1386 and three strains of fungi: Alternaria alternata CBS1526, Fusarium linii KB-F1 and Aspergillus niger DSM1957. In the case of E. coli ATCC10536 almost all derivatives hindered the bacterial growth (∆OD = 0). Furthermore, the best results were observed in the presence of 4'-aminochalcone (3), that completely limited the growth of all tested strains at the concentration range of 0.25-0.5 mg·mL-1. The strongest bacteriostatic activity was exhibited by novel 3'-amino-4-benzyloxychalcone (14), that prevented the growth of E. coli ATCC10536 with MIC = 0.0625 mg·mL-1.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Chalconas , Escherichia coli/crecimiento & desarrollo , Hongos/crecimiento & desarrollo , Neoplasias , Staphylococcus aureus/crecimiento & desarrollo , Animales , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Células COS , Chalconas/síntesis química , Chalconas/química , Chalconas/farmacología , Chlorocebus aethiops , Células HT29 , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología
6.
Molecules ; 24(4)2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30769816

RESUMEN

In our investigation, we concentrated on naringenin (NG)-a widely studied flavanone that occurs in citrus fruits. As a result of a reaction with a range of alkyl iodides, 7 novel O-alkyl derivatives of naringenin (7a⁻11a, 13a, 17a) were obtained. Another chemical modification led to 9 oximes of O-alkyl naringenin derivatives (7b⁻13b, 16b⁻17b) that were never described before. The obtained compounds were evaluated for their potential antibacterial activity against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The results were reported as the standard minimal inhibitory concentration (MIC) values and compared with naringenin and its known O-alkyl derivatives. Compounds 4a, 10a, 12a, 14a, 4b, 10b, 11b, and 14b were described with MIC of 25 µg/mL or lower. The strongest bacteriostatic activity was observed for 7-O-butylnaringenin (12a) against S. aureus (MIC = 6.25 µg/mL). Moreover, the antitumor effect of flavonoids was examined on human colon cancer cell line HT-29. Twenty-six compounds were characterized as possessing an antiproliferative activity stronger than that of naringenin. The replacement of the carbonyl group with an oxime moiety significantly increased the anticancer properties. The IC50 values below 5 µg/mL were demonstrated for four oxime derivatives (8b, 11b, 13b and 16b).


Asunto(s)
Antibacterianos/química , Flavanonas/química , Flavonoides/química , Antibacterianos/síntesis química , Antibacterianos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/patogenicidad , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Flavanonas/síntesis química , Flavanonas/farmacología , Flavonoides/síntesis química , Flavonoides/farmacología , Células HT29 , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Oximas/síntesis química , Oximas/química , Oximas/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad , Relación Estructura-Actividad
7.
RSC Adv ; 8(53): 30379-30386, 2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35546852

RESUMEN

Biotransformations are an alternative method of receiving dihydrochalcones as a result of the reduction of α,ß-unsaturated ketones - chalcones. In presented research, two strains of bacteria - Gordonia sp. DSM44456 and Rhodococcus sp. DSM364 - were selected as effective biocatalysts that are able to transform chalcones in a short period of time. As a result of our investigation 3 new dihydrochalcones and one novel alcohol were obtained with high isolated yields. All 4'-methylchalcone derivatives and biotransformations products were tested for antimicrobial activity against Escherichia coli ATCC10536, Staphylococcus aureus DSM799, Candida albicans DSM1386, Alternaria alternata CBS1526, Fusarium linii KB-F1, and Aspergillus niger DSM1957. The best inhibitory effect was observed for all chalcones against E. coli ATCC10536 - compounds 1-6 and 8 prevented thorough growth of this strain (ΔOD = 0). Moreover, dihydrochalcones showed about 2-3 times stronger inhibitory effect against S. aureus DSM799 in comparison to their chalcones. Excluding the E. coli ATCC10536 strain, 3-(4-carboxyphenyl)-1-(4-methylphenyl)propan-1-ol (8b) had weaker biological activity than 4-carboxy-4'-methyl-α,ß-dihydrochalcone (8a).

8.
Molecules ; 22(9)2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878189

RESUMEN

O -Alkyl derivatives of naringenin ( 1a - 10a ) were prepared from naringenin using the corresponding alkyl iodides and anhydrous potassium carbonate. The resulting products were used to obtain oximes ( 1b - 10b ). All compounds were tested for antimicrobial activity against Escherichia coli ATCC10536, Staphylococcus aureus DSM799, Candida albicans DSM1386, Alternaria alternata CBS1526, Fusarium linii KB-F1, and Aspergillus niger DSM1957. The resulting biological activity was expressed as the increase in optical density (ΔOD). The highest inhibitory effect against E. coli ATCC10536 was observed for 7,4'-di- O -pentylnaringenin ( 8a ), 7- O -dodecylnaringenin ( 9a ), naringenin oxime ( NG-OX ), 7,4'-di- O -pentylnaringenin oxime ( 8b ), and 7- O -dodecylnaringenin oxime ( 9b ) (ΔOD = 0). 7- O -dodecylnaringenin oxime ( 9b ) also inhibited the growth of S. aureus DSM799 (ΔOD = 0.35) and C. albicans DSM1386 (ΔOD = 0.22). The growth of A. alternata CBS1526 was inhibited as a result of the action of 7,4'-di- O -methylnaringenin ( 2a ), 7- O -ethylnaringenin ( 4a ), 7,4'-di- O -ethylnaringenin ( 5a ), 5,7,4'-tri- O -ethylnaringenin ( 6a ), 7,4'-di- O -pentylnaringenin ( 8a ), and 7- O -dodecylnaringenin ( 9a ) (ΔOD in the range of 0.49-0.42) in comparison to that of the control culture (ΔOD = 1.87). In the case of F. linii KB-F1, naringenin ( NG ), 7,4'-di- O -dodecylnaringenin ( 10a ), 7- O -dodecylnaringenin oxime ( 9b ), and 7,4'-di- O -dodecylnaringenin oxime ( 10b ) showed the strongest effect (ΔOD = 0). 7,4'-Di- O -pentylnaringenin ( 8a ) and naringenin oxime ( NG-OX ) hindered the growth of A. niger DSM1957 (ΔOD = 0).


Asunto(s)
Antibacterianos/síntesis química , Antifúngicos/síntesis química , Flavanonas/síntesis química , Oximas/síntesis química , Antibacterianos/farmacología , Antifúngicos/farmacología , Aspergillus niger/efectos de los fármacos , Candida albicans/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Flavanonas/farmacología , Fusarium/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Oximas/farmacología , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad
9.
Microb Cell Fact ; 16(1): 136, 2017 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-28778165

RESUMEN

BACKGROUND: Chalcones are the biogenetic precursors of all known flavonoids, which play an essential role in various metabolic processes in photosynthesizing organisms. The use of whole cyanobacteria cells in a two-step, light-catalysed regioselective bio-reduction of chalcone, leading to the formation of the corresponding dihydrochalcone, is reported. The prokaryotic microalgae cyanobacteria are known to produce phenolic compounds, including flavonoids, as natural components of cells. It seems logical that organisms producing such compounds possess a suitable "enzymatic apparatus" to carry out their biotransformation. Therefore, determination of the ability of whole cells of selected cyanobacteria to carry out biocatalytic transformations of chalcone, the biogenetic precursor of all known flavonoids, was the aim of our study. RESULTS: Chalcone was found to be converted to dihydrochalcone by all examined cyanobacterial strains; however, the effectiveness of this process depends on the strain with biotransformation yields ranging from 3% to >99%. The most effective biocatalysts are Anabaena laxa, Aphanizomenon klebahnii, Nodularia moravica, Synechocystis aquatilis (>99% yield) and Merismopedia glauca (92% yield). The strains Anabaena sp. and Chroococcus minutus transformed chalcone in more than one way, forming a few products; however, dihydrochalcone was the dominant product. The course of biotransformation shed light on the pathway of chalcone conversion, indicating that the process proceeds through the intermediate cis-chalcone. The scaled-up process, conducted on a preparative scale and by using a mini-pilot photobioreactor, fully confirmed the high effectiveness of this bioconversion. Moreover, in the case of the mini-pilot photobioreactor batch cultures, the optimization of culturing conditions allowed the shortening of the process conducted by A. klebahnii by 50% (from 8 to 4 days), maintaining its >99% yield. CONCLUSIONS: This is the first report related to the use of whole cells of halophilic and freshwater cyanobacteria strains in a two-step, light-catalysed regioselective bio-reduction of chalcone, leading to the formation of the corresponding dihydrochalcone. The total bioconversion of chalcone in analytical, preparative, and mini-pilot scales of this process creates the possibility of its use in the food industry for the production of natural sweeteners.


Asunto(s)
Chalconas/metabolismo , Cianobacterias/metabolismo , Edulcorantes/metabolismo , Biocatálisis , Biotransformación , Catálisis , Chalconas/análisis , Chalconas/química , Cromatografía de Gases y Espectrometría de Masas , Luz , Oxidación-Reducción , Estereoisomerismo , Edulcorantes/química
10.
PLoS One ; 12(5): e0177631, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28498848

RESUMEN

The interactions between the plant-derived bioflavonoid, naringenin, and prokaryotic microalgae representatives (cyanobacteria), were investigated with respect to its influence on the growth and metabolic response of these microorganisms. To achieve reliable results, the growth of cyanobacteria was determined based on measurements of chlorophyll content, morphological changes were assessed through microscopic observations, and the chemical response of cells was determined using liquid and gas chromatography (HPLC; GC-FID). The results show that micromolar levels of naringenin stimulated the growth of cyanobacteria. Increased growth was observed for halophilic strains at naringenin concentrations below 40 mg L-1, and in freshwater strains at concentrations below 20 mg L-1. The most remarkable stimulation was observed for the freshwater species Nostoc muscorum, which had a growth rate that was up to 60% higher than in the control. When naringenin was examined at concentrations above 40 mg L-1, the growth of the tested microorganisms was inhibited. Simultaneously, an intensive excretion of exopolysaccharides was observed. Microscopic observations strongly suggest that these effects resulted from a structural disturbance of cyanobacterial cell walls that was exerted by naringenin. This phenomenon, in combination with the absorption of naringenin into cell wall structures, influenced cell permeability and thus the growth of bacteria. Fortunately, almost all the naringenin added to the culture was incorporated into to cell substructures and could be recovered through extraction, raising the possibility that this modulator could be recycled.


Asunto(s)
Cianobacterias/metabolismo , Flavanonas/metabolismo , Clorofila/metabolismo , Cromatografía de Gases , Cromatografía Liquida , Nostoc muscorum/metabolismo
11.
Molecules ; 22(1)2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-28106750

RESUMEN

The aim of this study was to obtain new unsaturated lactones by chemical synthesis and their microbial transformations using fungal strains. Some of these strains were able to transform unsaturated lactones into different hydroxy or epoxy derivatives. Strains of Syncephalastrum racemosum and Absidia cylindrospora gave products with a hydroxy group introduced into a tertiary carbon, while the Penicillium vermiculatum strain hydroxylated primary carbons. The Syncephalastrum racemosum strain hydroxylated both substrates in an allylic position. Using the Absidia cylindrospora and Penicillium vermiculatum strains led to the obtained epoxylactones. The structures of all lactones were established on the basis of spectroscopic data.


Asunto(s)
Biotransformación , Lactonas/síntesis química , Lactonas/metabolismo , Absidia/metabolismo , Hidroxilación , Mucorales/metabolismo , Penicillium/metabolismo
12.
Z Naturforsch C J Biosci ; 72(5-6): 209-217, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28107178

RESUMEN

The aim of this article is influence of the structure of lactones with the methylcyclohexene and dimethylcyclohexene ring on their biotransformation and antimicrobial activity. This work was based on the general remark that even the smallest change in the structure of a compound can affect its biological properties. The results of the biotransformation of four bicyclic unsaturated lactones with one or two methyl groups in the cyclohexene ring was tested using fifteen fungal strains (Fusarium species, Penicillium species, Absidia species, Cunninghamella japonica, and Pleurotus ostreatus) and five yeast strains (Yarrowia lipolytica, Rhodorula marina, Rhodorula rubra, Candida viswanathii, and Saccharomyces cerevisiae). During these transformations, new epoxylactone and hydroxylactone were obtained. The relationship between the substrate structure and the ability of the microorganisms to transform them were analysed. Only compounds with C-O bond of lactone ring in the equatorial position were transformed by fungus. All presented here lactones were examined also for their antimicrobial activity. It turned out that these compounds exhibited growth inhibition of bacteria and fungi, mainly Bacillus subtilis, Candida albicans, Aspergillus niger, and Penicillium expansum.


Asunto(s)
Bacterias/efectos de los fármacos , Ciclohexenos/metabolismo , Ciclohexenos/farmacología , Hongos/efectos de los fármacos , Hongos/metabolismo , Lactonas/metabolismo , Lactonas/farmacología , Levaduras/metabolismo , Bacterias/crecimiento & desarrollo , Biotransformación , Ciclohexenos/síntesis química , Hongos/crecimiento & desarrollo , Lactonas/síntesis química , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad , Levaduras/crecimiento & desarrollo
13.
Molecules ; 21(11)2016 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-27809258

RESUMEN

The aim of this study was the chemical synthesis of a series of halo- and unsaturated lactones, as well as their microbial transformation products. Finally some of their biological activities were assessed. Three bicyclic halolactones with a methyl group in the cyclohexane ring were obtained from the corresponding γ,δ-unsaturated ester during a two-step synthesis. These lactones were subjected to screening biotransformation using twenty two fungal strains. These strains were tested on their ability to transform halolactones into new hydroxylactones. Among the six strains able to catalyze hydrolytic dehalogenation, only two (Fusarium equiseti, AM22 and Yarrowia lipolytica, AM71) gave a product in a high yield. Moreover, one strain (Penicillium wermiculatum, AM30) introduced the hydroxy group on the cyclohexane ring without removing the halogen atom. The biological activity of five of the obtained lactones was tested. Some of these compounds exhibited growth inhibition against bacteria, yeasts and fungi and deterrent activity against peach-potato aphid.


Asunto(s)
Fusarium/metabolismo , Lactonas , Penicillium/metabolismo , Yarrowia/metabolismo , Lactonas/síntesis química , Lactonas/química , Lactonas/farmacocinética , Lactonas/farmacología
14.
Molecules ; 21(7)2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27376255

RESUMEN

The aim of the study was to obtain new compounds during biotransformation of two halocompounds, the δ-bromo and δ-iodo-γ-bicyclolactones 1 and 2. Unexpectedly Pleurotus ostreatus produced together with the hydroxylactone, 2-hydroxy-4,4-dimethyl-9-oxabicyclo[4.3.0]nonane-8-one (3), its own metabolite (3S,9S,15S)-(6E,12E)-3,9,15-trimethyl-4,10,16-trioxacyclohexa-deca-6,12-diene-1,5,8,11,14-pentaone (4). The method presented here, in which this macrosphelide 4 was obtained by biotransformation, has not been previously described in the literature. To the best of our knowledge, this compound has been prepared only by chemical synthesis to date. This is the first report on the possibility of the biosynthesis of this compound by the Pleurotus ostreatus strain. The conditions and factors, like temperature, salts, organic solvents, affecting the production of this macrosphelide by Pleurotus ostreatus strain were examined. The highest yield of macroshphelide production was noticed for halolactones, as well with iodide, bromide, iron and copper (2+) ions as inductors.


Asunto(s)
Biotransformación , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/metabolismo , Lactonas/metabolismo , Pleurotus/metabolismo , Hidrólisis , Espectroscopía de Resonancia Magnética , Estructura Molecular
15.
J Agric Food Chem ; 63(30): 6749-56, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26176501

RESUMEN

Xanthohumol (14) and isoxanthohumol (6) derived from hop (Humulus lupulus L., Cannabaceae) and selected chalcone and chromene derivatives, obtained by chemical synthesis, were studied for antifeedant activity against the peach-potato aphid (Myzus persicae [Sulz.]). The study used also commercially available 4-chromanone (1), flavanone (4), naringenin (5), chromone (7), flavone (8), 7-aminoflavone (9), trans-chalcone (10), and 4-methoxychalcone (12). For chromone derivatives it was observed that the presence of a phenyl substituent at C-2 in the chromone (7) skeleton increased the insect antifeedant activity, and this activity was observed for a longer time. Also, the introduction of an amino group at C-7 of flavone (8) considerably increased the insect antifeedant activity, which was observed for the whole test time. Among the compounds examined, the strongest deterrents were isoxanthohumol (6), 7-methoxy-2,2-dimethylchroman-4-one (3), 7-aminoflavone (9), and 4-ethyl-4'-methoxychalcone (13).


Asunto(s)
Áfidos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Flavonoides/farmacología , Humulus/química , Insecticidas/farmacología , Extractos Vegetales/farmacología , Propiofenonas/farmacología , Xantonas/farmacología , Animales , Áfidos/fisiología , Flavonoides/química , Insecticidas/química , Estructura Molecular , Extractos Vegetales/química , Propiofenonas/química , Xantonas/química
16.
Fitoterapia ; 103: 71-82, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25771121

RESUMEN

Isoxanthohumol (IXN), apart from xanthohumol (XN) and 8-prenylnaringenin (8PN), is one of the most important prenylflavonoids found in hops. Another natural source of this compound is a shrub Sophora flavescens, used in traditional Chinese medicine. Main dietary source of IXN is beer, and the compound is produced from XN during wort boiling. In the human body, the compound is O-demethylated to 8PN, the strongest known phytoestrogen. This process takes place in the liver and in the intestine, where it is mediated by local microflora. It has been reported in some studies that even though beer contains small amounts of hops and its preparations, these compounds may affect the functioning of the human body. IXN exhibits an antiproliferative activity against human cell lines typical for breast cancer (MCF-7), ovarian cancer (A-2780), prostate cancer (DU145 and PC-3), and colon cancer (HT-29 and SW620) cells. It strongly inhibits the activation of the following carcinogens: 2-amino-3-methylimidazol-[4,5-f]quinoline and aflatoxin B1 (AFB1) via human cytochrome P450 (CYP1A2). It also inhibits the production of prostate specific antigen (PSA). IXN significantly reduces the expression of transforming growth factor-ß (TGF-ß) in the case of invasive breast cancer MDA-MB-231. It interferes with JAK/STAT signaling pathway and inhibits the expression of pro1inflammatory genes in the monoblastic leukemia cell line (MonoMac6). It activates apoptosis in human umbilical vein endothelial cells (HUVEC) and human aortic smooth muscle cells (HASMCs). In addition, IXN shows an antiviral activity towards herpes viruses (HSV1 and HSV2) and bovine viral diarrhea virus (BVDV).


Asunto(s)
Flavonoides/farmacología , Humulus/química , Xantonas/farmacología , Cerveza , Línea Celular Tumoral/efectos de los fármacos , Humanos , Estructura Molecular
17.
Molecules ; 20(2): 3335-53, 2015 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-25690292

RESUMEN

Eight new lactones (δ-chloro-, δ-bromo- and δ-iodo-γ-lactones), each with a methylcyclohexane ring, were obtained by chemical means from (4-methylcyclohex-2-en-1-yl) acetic acid or (6-methylcyclohex-2-en-1-yl) acetic acid. Whole cells of ten fungal strains (Fusarium species, Syncephalastrum racemosum and Botrytis cinerea) were tested on their ability to convert these lactones into other products. Some of the tested fungal strains transformed chloro-, bromo- and iodolactone with a methyl group at C-5 into 2-hydroxy-5-methyl-9-oxabicyclo[4.3.0]nonan-8-one during hydrolytic dehalogenation. When the same lactones had the methyl group at C-3, no structural modifications of halolactones were observed. In most cases, the optical purity of the product was low or medium, with the highest rate for chlorolactone (45.4%) and iodolactone (45.2% and 47.6%). All of the obtained compounds were tested with reference to their smell. Seven halolactones and the hydroxylactone obtained via biotransformation of halolactones with 5-methylcyclohexane ring were examined for their antimicrobial activity. These compounds were capable of inhibiting growth of some bacteria, yeasts and fungi.


Asunto(s)
Antiinfecciosos , Bacterias/crecimiento & desarrollo , Ciclohexanos/química , Hongos/crecimiento & desarrollo , Lactonas , Antiinfecciosos/química , Antiinfecciosos/farmacología , Lactonas/química , Lactonas/farmacología
18.
Z Naturforsch C J Biosci ; 69(7-8): 309-16, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25265851

RESUMEN

Enantioselective reduction of the carbonyl group of three phenylglyoxylic acid esters (methyl, ethyl, and n-propyl esters, 2-4) was conducted using blended plant materials (roots of carrot, beetroot, celeriac and parsley; apple). All used biocatalysts transformed these esters to the corresponding mandelic acid esters with high yield, preferably into the respective R-enantiomer. Butanedione addition improved the enantioselectivity of the reaction.


Asunto(s)
Ésteres/metabolismo , Glioxilatos/metabolismo , Ácidos Mandélicos/metabolismo , Plantas/metabolismo , Biotransformación , Cromatografía de Gases , Cromatografía en Capa Delgada , Glioxilatos/química , Espectroscopía de Resonancia Magnética , Ácidos Mandélicos/química , Espectrofotometría Infrarroja , Estereoisomerismo
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 118: 716-23, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24096067

RESUMEN

Oximes of isoxanthohumol (IXN), naringenin (N) and flavanone (FL) were synthesized with yields of 88-95% and their antioxidant activity was evaluated using the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) method. Although naringenin oxime (NOX) and flavanone oxime (FLOX) did not have any significant antioxidant effect (EC50=2.21 mM and 78.7 mM, respectively), isoxanthohumol oxime (IXNOX) showed a strong antioxidant activity (EC50=0.0411 mM), comparable to the activity of ascorbic acid (EC50=0.0181 mM). The structure of new compound IXNOX was established using (1)H NMR, (13)C NMR, IR and UV-VIS spectroscopy, by comparison to IXN, NOX and FLOX.


Asunto(s)
Antioxidantes/química , Oximas/química , Xantonas/química , Antioxidantes/farmacología , Compuestos de Bifenilo/química , Radicales Libres/química , Espectroscopía de Resonancia Magnética , Oximas/farmacología , Picratos/química , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta , Xantonas/farmacología
20.
Med Chem Res ; 21(12): 4230-4238, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23087590

RESUMEN

Several analogues of 7-O- and 4'-O-substituted isoxanthohumol and 8-prenylnaringenin, the strongest known phytoestrogen and potential anticancerogenic agent, were synthesized. Acyl, alkyl, and allyl derivatives of isoxanthohumol underwent the demethylation process using MgI(2 )× 2Et(2)O in anhydrous THF with the yields of 61-89%. Some of the compounds approached the international criteria of antiproliferative activity (4 µg/ml) for synthetic agents against the human cancer cell lines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...