Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 8(11): e81769, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24303070

RESUMEN

During normal cerebellar development, the remarkable expansion of granule cell progenitors (GCPs) generates a population of granule neurons that outnumbers the total neuronal population of the cerebral cortex, and provides a model for identifying signaling pathways that may be defective in medulloblastoma. While many studies focus on identifying pathways that promote growth of GCPs, a critical unanswered question concerns the identification of signaling pathways that block mitogenic stimulation and induce early steps in differentiation. Here we identify WNT3 as a novel suppressor of GCP proliferation during cerebellar development and an inhibitor of medulloblastoma growth in mice. WNT3, produced in early postnatal cerebellum, inhibits GCP proliferation by down-regulating pro-proliferative target genes of the mitogen Sonic Hedgehog (SHH) and the bHLH transcription factor Atoh1. WNT3 suppresses GCP growth through a non-canonical Wnt signaling pathway, activating prototypic mitogen-activated protein kinases (MAPKs), the Ras-dependent extracellular-signal-regulated kinases 1/2 (ERK1/2) and ERK5, instead of the classical ß-catenin pathway. Inhibition of MAPK activity using a MAPK kinase (MEK) inhibitor reversed the inhibitory effect of WNT3 on GCP proliferation. Importantly, WNT3 inhibits proliferation of medulloblastoma tumor growth in mouse models by a similar mechanism. Thus, the present study suggests a novel role for WNT3 as a regulator of neurogenesis and repressor of neural tumors.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Meduloblastoma/metabolismo , Meduloblastoma/patología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Células-Madre Neurales/metabolismo , Proteína Wnt3/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Neoplasias Cerebelosas/genética , Modelos Animales de Enfermedad , Activación Enzimática , Expresión Génica , Sistema de Señalización de MAP Quinasas , Meduloblastoma/genética , Ratones , Ratones Noqueados , Células-Madre Neurales/patología , Transducción de Señal , Transducción Genética , Transgenes , Proteína Wnt3/genética
2.
Nature ; 463(7279): 318-25, 2010 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-20032975

RESUMEN

The inference of transcriptional networks that regulate transitions into physiological or pathological cellular states remains a central challenge in systems biology. A mesenchymal phenotype is the hallmark of tumour aggressiveness in human malignant glioma, but the regulatory programs responsible for implementing the associated molecular signature are largely unknown. Here we show that reverse-engineering and an unbiased interrogation of a glioma-specific regulatory network reveal the transcriptional module that activates expression of mesenchymal genes in malignant glioma. Two transcription factors (C/EBPbeta and STAT3) emerge as synergistic initiators and master regulators of mesenchymal transformation. Ectopic co-expression of C/EBPbeta and STAT3 reprograms neural stem cells along the aberrant mesenchymal lineage, whereas elimination of the two factors in glioma cells leads to collapse of the mesenchymal signature and reduces tumour aggressiveness. In human glioma, expression of C/EBPbeta and STAT3 correlates with mesenchymal differentiation and predicts poor clinical outcome. These results show that the activation of a small regulatory module is necessary and sufficient to initiate and maintain an aberrant phenotypic state in cancer cells.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Mesodermo/metabolismo , Mesodermo/patología , Transcripción Genética , Animales , Neoplasias Encefálicas/diagnóstico , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Diferenciación Celular/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Reprogramación Celular/genética , Biología Computacional , Glioma/diagnóstico , Glioma/genética , Glioma/patología , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Neuronas/metabolismo , Neuronas/patología , Pronóstico , Reproducibilidad de los Resultados , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
3.
J Neurosci ; 27(27): 7318-28, 2007 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-17611284

RESUMEN

Huntingtin is an antiapoptotic protein that becomes toxic when its polyglutamine stretch is expanded, resulting in Huntington's disease (HD). Protein context and posttranslational modifications regulate huntingtin toxicity. Identifying signaling pathways that act on huntingtin is, therefore, key to understanding huntingtin function in normal and pathological conditions. We show here that huntingtin is phosphorylated by the cyclin-dependent kinase 5 (Cdk5) at serines 1181 and 1201. Phosphorylation can be induced by DNA damage in vitro and in vivo. The state of huntingtin phosphorylation is a crucial regulator of neuronal cell death. Absence of phosphorylation of huntingtin at serines 1181 and 1201 confers toxic properties to wild-type huntingtin in a p53-dependent manner in striatal neurons and accelerates neuronal death induced by DNA damage. In contrast, phosphorylation at serines 1181 and 1201 protects against polyQ-induced toxicity. Finally, we show in late stages of HD a sustained DNA damage that is associated with a decrease in Cdk5/p35 levels. We propose that wild-type huntingtin is a component of the DNA damage response signal in neurons and that the Cdk5/DNA damage pathway is dysregulated in HD.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/fisiología , Daño del ADN/fisiología , Mutación , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/toxicidad , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/toxicidad , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Animales , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Quinasa 5 Dependiente de la Ciclina/genética , Daño del ADN/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/fisiología , Humanos , Proteína Huntingtina , Enfermedad de Huntington/enzimología , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Ratones , Persona de Mediana Edad , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Neuronas/efectos de los fármacos , Neuronas/enzimología , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...