Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 101
1.
Article En | MEDLINE | ID: mdl-38740634

The aim of this study was to employ an agro-industrial byproduct, specifically Citrus sinensis peels, as a reservoir of polyphenols. The natural chemicals present in C. sinensis peels serve as reducing agents in an environmentally benign method for synthesizing silver nanoparticles (AgNPs). This methodology not only provides a more environmentally friendly method for synthesizing nanoparticles but also enhances the value of agricultural waste, emphasizing the sustainable utilization of resources. In our study, AgNPs were successfully synthesized using peel aqueous exact of C. sinensis and then their various biological activity has been investigated. The synthesized AgNPs were characterized by UV-vis spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and transmission electron microscopy (TEM) analysis. Furthermore, their effectiveness in inhibiting growth and biofilm formation of Escherichia coli, Staphylococcus aureus, and Candida albicans has been investigated. The minimum inhibitory concentrations (MIC) for E. coli and S. aureus were both 32 µg/mL, and for C. albicans, it was 128 µg/mL. At 250 µg/mL of AgNPs, 94% and 92% biofilm inhibition were observed against E. coli and S. aureus, respectively. Furthermore, AgNPs demonstrated significant toxic effects against human prostate cancer cell line DU145 as investigated by anti-apoptotic, 4',6-diamidino-2-phenylindole (DAPI), reactive oxygen species (ROS), and acridine orange/ethidium bromide (AO/EtBr) assays. We also conducted uptake analysis on these pathogens and cancer cell lines to preliminarily investigate the mechanisms underlying their toxic effects. These findings confirm that AgNPs can serve as a cost-effective, non-toxic, and environmentally friendly resource for green synthesis of medicinal AgNPs. Moreover, this approach offers an alternative recycling strategy that contributes to the sustainable use of biological by-products.

2.
Plant Physiol Biochem ; 210: 108604, 2024 May.
Article En | MEDLINE | ID: mdl-38608505

The rapid advancement of nanotechnology has led to unprecedented innovations across diverse industries, including pharmaceuticals, agriculture, cosmetics, electronics, textiles, and food, owing to the unique properties of nanoparticles. The extensive production and unregulated release of synthetic nanoparticles may contribute to nanopollution within the ecosystem. In the agricultural sector, nanotechnology is increasingly utilized to improve plant productivity, enhance resistance to stressors, and reduce the usage of chemicals. However, the uncontrolled discharge of nanoparticles into the natural environment raises concerns regarding possible plant toxicological impacts. The review focuses on the translocation of these particles within the plants, emphasizing their phytotoxicological effects at morphological, physiological, biochemical, and molecular levels. Eventhough the beneficial aspects of these nanoparticles are evident, excessive usage of nanoparticles at higher concentrations may lead to potential adverse effects. The phytotoxicity resulting from excessive amounts of nanoparticles affects seed germination and biomass production, disrupts the photosynthesis system, induces oxidative stress, impacts cell membrane integrity, alters gene expression, causes DNA damage, and leads to epigenetic variations in plants. Nanoparticles are found to directly associate with the cell membrane and cell organelles, leading to the dissolution and release of toxic ions, generation of reactive oxygen species (ROS) and subsequent oxidative stress. The present study signifies and accumulates knowledge regarding the application of nanoparticles in agriculture and illustrates a clear picture of their possible impacts on plants and soil microbes, thereby paving the way for future developments in nano-agrotechnology. The review concludes by addressing current challenges and proposing future directions to comprehend and mitigate the possible biological risks associated with nanoparticles in agriculture.


Nanoparticles , Plants , Nanoparticles/toxicity , Nanoparticles/chemistry , Plants/drug effects , Plants/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects
3.
Article En | MEDLINE | ID: mdl-38526617

This study emphasized on the synthesis of zinc oxide nanoparticles (ZnO NPs) in an environmentally friendly manner from the extract of Catharanthus roseus leaves and its antibacterial assessment against the pneumonia-causing pathogen Klebsiella pneumoniae. This simple and convenient phytosynthesis approach is found to be beneficial over conventional methods, wherein plants serve as excellent reducing, capping, and stabilizing agents that enables the formation of ZnO NPs without the use of harmful chemicals. The formation of ZnO NPs was confirmed through several characterization techniques such as UV-visible spectroscopy, XRD, FT-IR, SEM, HR-TEM, and EDX. XRD analysis revealed high polycrystallinity with crystallite size of approximately 13 nm. SEM and HR-TEM revealed the hexagonal structure of ZnO NPs with the particle size range of 20-50 nm. The EDX shows the elemental purity without any impurity. Furthermore, the antibacterial efficacy by the technique of disc diffusion exhibited clear inhibition zones in ZnO NPs-treated discs. In addition, 125 µg/mL of ZnO NP concentration showed minimum inhibition by the microbroth dilution method. The potent inhibitory activity was further validated with trypan blue dye exclusion and fluorescence microscopy. Finally, SEM examination confirmed the efficient antibacterial potential of ZnO NPs through disruption of the intact morphology of Klebsiella pneumoniae.

4.
ACS Omega ; 9(2): 2639-2649, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38250384

Cerium oxide nanoparticles (CeO2NPs) have a broad scale of applications in the biomedical field due to their excellent physicochemical and catalytic properties. The present study aims to synthesize the CeO2NPs from Centella asiatica (C. asiatica) leaf extract, which has been used in Indian traditional medicine for its neuroprotective properties. The CeO2NPs were characterized by ultraviolet-visible, X-ray diffraction, Fourier transform infrared, Raman spectroscopy, scanning electron microscopy- energy dispersive X-ray spectroscopy, and high-resolution transmission electron microscopy. The antioxidant property was evaluated by 2,2-di (4-tert-octyl phenyl)-1-picrylhydrazyl and OH radical assays. The neuroprotective potential was assessed against the oxidative stress (OS) induced by H2O2 in the human neuroblastoma (SH-SY5Y) cell line. CeO2NPs exhibited significant DPPH and OH radical scavenging activity. Our results revealed that CeO2NPs significantly increased H2O2-induced cell viability, decreased lactate dehydrogenase, protein carbonyls, reactive oxygen species generation, apoptosis, and upregulated antioxidant enzyme activity. Our findings suggest that the CeO2NPs protect the SH-SY5Y cells from OS and apoptosis, which could potentially counter OS-related neurodegenerative disorders.

5.
Biomed Pharmacother ; 170: 116070, 2024 Jan.
Article En | MEDLINE | ID: mdl-38163396

Two-dimensional (2D) nanomaterials have garnered enormous attention seemingly due to their unusual architecture and properties. Graphene and graphene oxide based 2D nanomaterials remained the most sought after for several years but the quest to design superior 2D nanomaterials which can find wider application gave rise to development of non-graphene 2D materials as well. Consequently, in addition to graphene based 2D nanomaterials, 2D nanostructures designed using macromolecules (such as DNAs, proteins, peptides and peptoids), transition metal dichalcogenides, transition-metal carbides and/or nitrides (MXene), black phosphorous, chitosan, hexagonal boron nitrides, and graphitic carbon nitride, and covalent organic frameworks have been developed. Interestingly, these 2D nanomaterials have found applications in diagnosis and treatment of various diseases including Alzheimer's disease (AD). Although AD is one of the most debilitating neurodegenerative conditions across the globe; unfortunately, there remains a paucity of effective diagnostic and/or therapeutic intervention for it till date. In this scenario, nanomaterial-based biosensors, or therapeutics especially 2D nanostructures are emerging to be promising in this regard. This review summarizes the diagnostic and therapeutic platforms developed for AD using 2D nanostructures. Collectively, it is worth mentioning that these 2D nanomaterials would seemingly provide an alternative and intriguing platform for biomedical interventions.


Alzheimer Disease , Biosensing Techniques , Graphite , Nanostructures , Humans , Graphite/chemistry , Alzheimer Disease/diagnosis , Alzheimer Disease/drug therapy , Nanostructures/therapeutic use , Nanostructures/chemistry , Biosensing Techniques/methods
6.
Environ Res ; 241: 117522, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-37967707

Cancer patients face a significant clinical and socio-economic burden due to increased incidence, mortality, and poor survival. Factors like late diagnosis, recurrence, drug resistance, severe side effects, and poor bioavailability limit the scope of current therapies. There is a need for novel, cost-effective, and safe diagnostic methods, therapeutics to overcome recurrence and drug resistance, and drug delivery vehicles with enhanced bioavailability and less off-site toxicity. Advanced nanomaterial-based research is aiding cancer biologists by providing solutions for issues like hypoxia, tumor microenvironment, low stability, poor penetration, target non-specificity, and rapid drug clearance. Currently, nanozymes and carbon-dots are attractive due to their low cost, high catalytic activity, biocompatibility, and lower toxicity. Nanozymes and carbon-dots are increasingly used in imaging, biosensing, diagnosis, and targeted cancer therapy. Integrating these materials with advanced diagnostic tools like CT scans and MRIs can aid in clinical decision-making and enhance the effectiveness of chemotherapy, photothermal, photodynamic, and sonodynamic therapies, with minimal invasion and reduced collateral effects.


Nanostructures , Neoplasms , Humans , Carbon , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Tumor Microenvironment
7.
Mol Neurobiol ; 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37966683

Neurodegenerative diseases (NDDs) have been increasing in incidence in recent years and are now widespread worldwide. Neuronal death is defined as the progressive loss of neuronal structure or function which is closely associated with NDDs and represents the intrinsic features of such disorders. Amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's, Parkinson's, and Huntington's diseases (AD, PD, and HD, respectively) are considered neurodegenerative diseases that affect a large number of people worldwide. Despite the testing of various drugs, there is currently no available therapy that can remedy or effectively slow the progression of these diseases. Nanomedicine has the potential to revolutionize drug delivery for the management of NDDs. The use of nanoparticles (NPs) has recently been developed to improve drug delivery efficiency and is currently subjected to extensive studies. Nanoengineered particles, known as nanodrugs, can cross the blood-brain barrier while also being less invasive compared to the most treatment strategies in use. Polymeric, magnetic, carbonic, and inorganic NPs are examples of NPs that have been developed to improve drug delivery efficiency. Primary research studies using NPs to cure AD are promising, but thorough research is needed to introduce these approaches to clinical use. In the present review, we discussed the role of metal-based NPs, polymeric nanogels, nanocarrier systems such as liposomes, solid lipid NPs, polymeric NPs, exosomes, quantum dots, dendrimers, polymersomes, carbon nanotubes, and nanofibers and surfactant-based systems for the therapy of neurodegenerative diseases. In addition, we highlighted nanoformulations such as N-butyl cyanoacrylate, poly(butyl cyanoacrylate), D-penicillamine, citrate-coated peptide, magnetic iron oxide, chitosan (CS), lipoprotein, ceria, silica, metallic nanoparticles, cholinesterase inhibitors, an acetylcholinesterase inhibitors, metal chelators, anti-amyloid, protein, and peptide-loaded NPs for the treatment of AD.

8.
Front Endocrinol (Lausanne) ; 14: 1153289, 2023.
Article En | MEDLINE | ID: mdl-37670876

Introduction: Polycystic Ovary syndrome (PCOS) affects the health of many women around theworld. Apart from fundamental metabolic problems connected to PCOS, focus of our study is on the role of quercetin on genes relevant to steroidogenesis and folliculogenesis. Methods: Eighteen mature parkes strain mice (4-5 weeks old) weighing18-21 g were randomly divided into three groups of six each as follows: Group I serves as the control and was given water and a regular chow diet ad lib for 66 days; group II was given oral gavage administration of letrozole (LETZ) (6 mg/kgbw) for 21 days to induce PCOS and was left untreated for 45 days; For three weeks, Group III received oral gavage dose of LETZ (6 mg/kg), after which it received Quercetin (QUER) (125 mg/kg bw orally daily) for 45 days. Results: In our study we observed that mice with PCOS had irregular estrous cycle with increased LH/FSH ratio, decreased estrogen level and decline in expression of Kitl, Bmp1, Cyp11a1, Cyp19a1, Ar, lhr, Fshr and Esr1 in ovary. Moreover, we observed increase in the expression of CYP17a1, as well as increase in cholesterol, triglycerides, testosterone, vascular endothelial growth factor VEGF and insulin levels. All these changes were reversed after the administration of quercetin in PCOS mice. Discussion: Quercetin treatment reversed the molecular, functional and morphological abnormalities brought on due to letrozole in pathological and physiological setting, particularly the issues of reproduction connected to PCOS. Quercetin doesn't act locally only but it acts systematically as it works on Pituitary (LH/FSH)- Ovary (gonad hormones) axis. the Side effects of Quercetin have to be targeted in future researches. Quercetin may act as a promising candidate for medical management of human PCOS.


Polycystic Ovary Syndrome , Female , Humans , Animals , Mice , Quercetin , Letrozole , Vascular Endothelial Growth Factor A , Follicle Stimulating Hormone
9.
Int J Obes (Lond) ; 47(12): 1179-1199, 2023 Dec.
Article En | MEDLINE | ID: mdl-37696926

Diabetes is a serious health issue that causes a progressive dysregulation of carbohydrate metabolism due to insufficient insulin hormone, leading to consistently high blood glucose levels. According to the epidemiological data, the prevalence of diabetes has been increasing globally, affecting millions of individuals. It is a long-term condition that increases the risk of various diseases caused by damage to small and large blood vessels. There are two main subtypes of diabetes: type 1 and type 2, with type 2 being the most prevalent. Genetic and molecular studies have identified several genetic variants and metabolic pathways that contribute to the development and progression of diabetes. Current treatments include gene therapy, stem cell therapy, statin therapy, and other drugs. Moreover, recent advancements in therapeutics have also focused on developing novel drugs targeting these pathways, including incretin mimetics, SGLT2 inhibitors, and GLP-1 receptor agonists, which have shown promising results in improving glycemic control and reducing the risk of complications. However, these treatments are often expensive, inaccessible to patients in underdeveloped countries, and can have severe side effects. Peptides, such as glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are being explored as a potential therapy for diabetes. These peptides are postprandial glucose-dependent pancreatic beta-cell insulin secretagogues and have received much attention as a possible treatment option. Despite these advances, diabetes remains a major health challenge, and further research is needed to develop effective treatments and prevent its complications. This review covers various aspects of diabetes, including epidemiology, genetic and molecular basis, and recent advancements in therapeutics including herbal and synthetic peptides.


Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Incretins/therapeutic use , Incretins/metabolism , Gastric Inhibitory Polypeptide , Insulin/metabolism , Peptides/therapeutic use , Glucose/metabolism , Blood Glucose/metabolism
10.
J Infect Public Health ; 16(9): 1443-1459, 2023 Sep.
Article En | MEDLINE | ID: mdl-37523915

Tuberculosis is a disease of poverty, discrimination, and socioeconomic burden. Epidemiological studies suggest that the mortality and incidence of tuberculosis are unacceptably higher worldwide. Genomic mutations in embCAB, embR, katG, inhA, ahpC, rpoB, pncA, rrs, rpsL, gyrA, gyrB, and ethR contribute to drug resistance reducing the susceptibility of Mycobacterium tuberculosis to many antibiotics. Additionally, treating tuberculosis with antibiotics also poses a serious risk of hepatotoxicity in the patient's body. Emerging data on drug-induced liver injury showed that anti-tuberculosis drugs remarkably altered levels of hepatotoxicity biomarkers. The review is an attempt to explore the anti-mycobacterial potential of selected, commonly available, and well-known phytocompounds and extracts of medicinal plants against strains of Mycobacterium tuberculosis. Many studies have demonstrated that phytocompounds such as flavonoids, alkaloids, terpenoids, and phenolic compounds have antibacterial action against Mycobacterium species, inhibiting the bacteria's growth and replication, and sometimes, causing cell death. Phytocompounds act by disrupting bacterial cell walls and membranes, reducing enzyme activity, and interfering with essential metabolic processes. The combination of these processes reduces the overall survivability of the bacteria. Moreover, several phytochemicals have synergistic effects with antibiotics routinely used to treat TB, improving their efficacy and decreasing the risk of resistance development. Interestingly, phytocompounds have been presented to reduce isoniazid- and ethambutol-induced hepatotoxicity by reversing serum levels of AST, ALP, ALT, bilirubin, MDA, urea, creatinine, and albumin to their normal range, leading to attenuation of inflammation and hepatic necrosis. As a result, phytochemicals represent a promising field of research for the development of new TB medicines.


Chemical and Drug Induced Liver Injury , Liver Diseases , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Bacterial Proteins/genetics , Tuberculosis, Multidrug-Resistant/microbiology , Antitubercular Agents/adverse effects , Mycobacterium tuberculosis/genetics , Tuberculosis/drug therapy , Tuberculosis/microbiology , Isoniazid/pharmacology , Mutation , Chemical and Drug Induced Liver Injury/drug therapy , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics
11.
Plants (Basel) ; 12(13)2023 Jul 06.
Article En | MEDLINE | ID: mdl-37447126

Globally, food safety and security are receiving a lot of attention to ensure a steady supply of nutrient-rich and safe food. Nanotechnology is used in a wide range of technical processes, including the development of new materials and the enhancement of food safety and security. Nanomaterials are used to improve the protective effects of food and help detect microbial contamination, hazardous chemicals, and pesticides. Nanosensors are used to detect pathogens and allergens in food. Food processing is enhanced further by nanocapsulation, which allows for the delivery of bioactive compounds, increases food bioavailability, and extends food shelf life. Various forms of nanomaterials have been developed to improve food safety and enhance agricultural productivity, including nanometals, nanorods, nanofilms, nanotubes, nanofibers, nanolayers, and nanosheets. Such materials are used for developing nanofertilizers, nanopesticides, and nanomaterials to induce plant growth, genome modification, and transgene expression in plants. Nanomaterials have antimicrobial properties, promote plants' innate immunity, and act as delivery agents for active ingredients. Nanocomposites offer good acid-resistance capabilities, effective recyclability, significant thermostability, and enhanced storage stability. Nanomaterials have been extensively used for the targeted delivery and release of genes and proteins into plant cells. In this review article, we discuss the role of nanotechnology in food safety and security. Furthermore, we include a partial literature survey on the use of nanotechnology in food packaging, food safety, food preservation using smart nanocarriers, the detection of food-borne pathogens and allergens using nanosensors, and crop growth and yield improvement; however, extensive research on nanotechnology is warranted.

12.
Polymers (Basel) ; 15(12)2023 Jun 08.
Article En | MEDLINE | ID: mdl-37376260

This study aimed to evaluate the incorporation of zirconia/silver phosphate nanoparticles to develop experimental dental adhesives and to measure their physical and mechanical properties. The nanoparticles were synthesized by the sonication method, and the phase purity, morphological pattern, and antibacterial properties with Staphylococcus aureus and Pseudomonas aeruginosa were assessed. The silanized nanoparticles were incorporated (0, 0.15, 0.25, and 0.5 wt.%) into the photoactivated dimethacrylate resins. The degree of conversion (DC) was assessed, followed by the micro-hardness and flexural strength/modulus test. Long-term color stability was investigated. The bond strength with the dentin surface was conducted on days 1 and 30. The transmission electron microscopy and X-ray diffractogram confirmed the nano-structure and phase purity of the particles. The nanoparticles showed antibacterial activities against both strains and inhibited biofilm formation. The DC range of the experimental groups was 55-66%. The micro-hardness and flexural strength increased with the concentration of nanoparticles in the resin. The 0.5 wt.% group showed significantly high micro-hardness values, whereas a non-significant difference was observed between the experimental groups for flexural strength. The bond strength was higher on day 1 than on day 30, and a significant difference was observed between the two periods. At day 30, the 0.5 wt.% showed significantly higher values compared to other groups. Long-term color stability was observed for all the samples. The experimental adhesives showed promising results and potential to be used for clinical applications. However, further investigations such as antibacterial, penetration depth, and cytocompatibility are required.

13.
Pharmaceutics ; 15(3)2023 Feb 23.
Article En | MEDLINE | ID: mdl-36986610

Neurodegenerative disorders encompass a wide range of pathological conditions caused by progressive damage to the neuronal cells and nervous-system connections, which primarily target neuronal dysfunction and result in problems with mobility, cognition, coordination, sensation, and strength. Molecular insights have revealed that stress-related biochemical alterations such as abnormal protein aggregation, extensive generation of reactive oxygen and nitrogen species, mitochondrial dysfunction, and neuroinflammation may lead to damage to neuronal cells. Currently, no neurodegenerative disease is curable, and the available standard therapies can only provide symptomatic treatment and delay the progression of the disease. Interestingly, plant-derived bioactive compounds have drawn considerable attention due to their well-established medicinal properties, including anti-apoptotic, antioxidant, anti-inflammatory, anticancer, and antimicrobial properties, as well as neuroprotective, hepatoprotective, cardioprotective, and other health benefits. Plant-derived bioactive compounds have received far more attention in recent decades than synthetic bioactive compounds in the treatment of many diseases, including neurodegeneration. By selecting suitable plant-derived bioactive compounds and/or plant formulations, we can fine tune the standard therapies because the therapeutic efficacy of the drugs is greatly enhanced by combinations. A plethora of in vitro and in vivo studies have demonstrated plant-derived bioactive compounds' immense potential, as proven by their capacity to influence the expression and activity of numerous proteins implicated in oxidative stress, neuroinflammation, apoptosis, and aggregation. Thus, this review mostly focuses on the antioxidant, anti-inflammatory, anti-aggregation, anti-cholinesterase, and anti-apoptotic properties of several plant formulations and plant-derived bioactive compounds and their molecular mechanisms against neurodegenerative disorders.

14.
Molecules ; 28(3)2023 Jan 28.
Article En | MEDLINE | ID: mdl-36770950

Central nervous system disorders, especially neurodegenerative diseases, are a public health priority and demand a strong scientific response. Various therapy procedures have been used in the past, but their therapeutic value has been insufficient. The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier is two of the barriers that protect the central nervous system (CNS), but are the main barriers to medicine delivery into the CNS for treating CNS disorders, such as brain tumors, Parkinson's disease, Alzheimer's disease, and Huntington's disease. Nanotechnology-based medicinal approaches deliver valuable cargos targeting molecular and cellular processes with greater safety, efficacy, and specificity than traditional approaches. CNS diseases include a wide range of brain ailments connected to short- and long-term disability. They affect millions of people worldwide and are anticipated to become more common in the coming years. Nanotechnology-based brain therapy could solve the BBB problem. This review analyzes nanomedicine's role in medication delivery; immunotherapy, chemotherapy, and gene therapy are combined with nanomedicines to treat CNS disorders. We also evaluated nanotechnology-based approaches for CNS disease amelioration, with the intention of stimulating the immune system by delivering medications across the BBB.


Central Nervous System Diseases , Nanoparticles , Humans , Nanomedicine , Drug Delivery Systems/methods , Brain , Blood-Brain Barrier , Central Nervous System Diseases/drug therapy , Nanoparticles/therapeutic use
15.
Cancers (Basel) ; 15(3)2023 Jan 23.
Article En | MEDLINE | ID: mdl-36765652

Major epigenetic alterations, such as chromatin modifications, DNA methylation, and miRNA regulation, have gained greater attention and play significant roles in oncogenesis, representing a new paradigm in our understanding of cancer susceptibility. These epigenetic changes, particularly aberrant promoter hypermethylation, abnormal histone acetylation, and miRNA dysregulation, represent a set of epigenetic patterns that contribute to inappropriate gene silencing at every stage of cancer progression. Notably, the cancer epigenome possesses various HDACs and DNMTs, which participate in the histone modifications and DNA methylation. As a result, there is an unmet need for developing the epigenetic inhibitors against HDACs and DNMTs for cancer therapy. To date, several epigenetically active synthetic inhibitors of DNA methyltransferases and histone deacetylases have been developed. However, a growing body of research reports that most of these synthetic inhibitors have significant side effects and a narrow window of specificity for cancer cells. Targeting tumor epigenetics with phytocompounds that have the capacity to modulate abnormal DNA methylation, histone acetylation, and miRNAs expression is one of the evolving strategies for cancer prevention. Encouragingly, there are many bioactive phytochemicals, including organo-sulfur compounds that have been shown to alter the expression of key tumor suppressor genes, oncogenes, and oncogenic miRNAs through modulation of DNA methylation and histones in cancer. In addition to vitamins and microelements, dietary phytochemicals such as sulforaphane, PEITC, BITC, DADS, and allicin are among a growing list of naturally occurring anticancer agents that have been studied as an alternative strategy for cancer treatment and prevention. Moreover, these bioactive organo-sulfur compounds, either alone or in combination with other standard cancer drugs or phytochemicals, showed promising results against many cancers. Here, we particularly summarize and focus on the impact of specific organo-sulfur compounds on DNA methylation and histone modifications through targeting the expression of different DNMTs and HDACs that are of particular interest in cancer therapy and prevention.

16.
J Fungi (Basel) ; 9(2)2023 Jan 18.
Article En | MEDLINE | ID: mdl-36836248

Antimicrobial resistance is a major global health concern and one of the gravest challenges to humanity today. Antibiotic resistance has been acquired by certain bacterial strains. As a result, new antibacterial drugs are urgently required to combat resistant microorganisms. Species of Trichoderma are known to produce a wide range of enzymes and secondary metabolites that can be exploited for the synthesis of nanoparticles. In the present study, Trichoderma asperellum was isolated from rhizosphere soil and used for the biosynthesis of ZnO NPs. To examine the antibacterial activity of ZnO NPs against human pathogens, Escherichia coli and Staphylococcus aureus were used. The obtained antibacterial results show that the biosynthesized ZnO NPs were efficient antibacterial agents against the pathogens E. coli and S. aureus, with an inhibition zone of 3-9 mm. The ZnO NPs were also effective in the prevention of S. aureus biofilm formation and adherence. The current work shows that the MIC dosages of ZnO NPs (25, 50, and 75 µg/mL) have effective antibacterial activity and antibiofilm action against S. aureus. As a result, ZnO NPs can be used as a part of combination therapy for drug-resistant S. aureus infections, where biofilm development is critical for disease progression.

17.
Molecules ; 28(2)2023 Jan 13.
Article En | MEDLINE | ID: mdl-36677853

The novel pathogenic virus was discovered in Wuhan, China (December 2019), and quickly spread throughout the world. Further analysis revealed that the pathogenic strain of virus was corona but it was distinct from other coronavirus strains, and thus it was renamed 2019-nCoV or SARS-CoV-2. This coronavirus shares many characteristics with other coronaviruses, including SARS-CoV and MERS-CoV. The clinical manifestations raised in the form of a cytokine storm trigger a complicated spectrum of pathophysiological changes that include cardiovascular, kidney, and liver problems. The lack of an effective treatment strategy has imposed a health and socio-economic burden. Even though the mortality rate of patients with this disease is lower, since it is judged to be the most contagious, it is considered more lethal. Globally, the researchers are continuously engaged to develop and identify possible preventive and therapeutic regimens for the management of disease. Notably, to combat SARS-CoV-2, various vaccine types have been developed and are currently being tested in clinical trials; these have also been used as a health emergency during a pandemic. Despite this, many old antiviral and other drugs (such as chloroquine/hydroxychloroquine, corticosteroids, and so on) are still used in various countries as emergency medicine. Plant-based products have been reported to be safe as alternative options for several infectious and non-infectious diseases, as many of them showed chemopreventive and chemotherapeutic effects in the case of tuberculosis, cancer, malaria, diabetes, cardiac problems, and others. Therefore, plant-derived products may play crucial roles in improving health for a variety of ailments by providing a variety of effective cures. Due to current therapeutic repurposing efforts against this newly discovered virus, we attempted to outline many plant-based compounds in this review to aid in the fight against SARS-CoV-2.


COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Attention
19.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 31.
Article En | MEDLINE | ID: mdl-36355520

Anthraquinones (AQs) are present in foods, dietary supplements, pharmaceuticals, and traditional treatments and have a wide spectrum of pharmacological activities. In the search for anti-cancer drugs, AQ derivatives are an important class. In this study, anthraquinone aglycons chrysophanol (Chr), emodin (EM) and FDA-approved anticancer drug fluorouracil were analyzed by molecular docking studies against receptor molecules caspase-3, apoptosis regulator Bcl-2, TRAF2 and NCK-interacting protein kinase (TNIK) and cyclin-dependent protein kinase 2 (CDK2) as novel candidates for future anticancer therapeutic development. The ADMET SAR database was used to predict the toxicity profile and pharmacokinetics of the Chr and EM. Furthermore, in silico results were validated by the in vitro anticancer activity against HCT-116 and HeLa cell lines to determine the anticancer effect. According to the docking studies simulated by the docking program AutoDock Vina 4.0, Chr and EM had good binding energies against the target proteins. It has been observed that Chr and EM show stronger molecular interaction than that of the FDA-approved anticancer drug fluorouracil. In the in vitro results, Chr and EM demonstrated promising anticancer activity in HCT-116 and HeLa cells. These findings lay the groundwork for the potential use of Chr and EM in the treatment of human colorectal and cervical carcinomas.

20.
Int J Mol Sci ; 23(19)2022 Sep 27.
Article En | MEDLINE | ID: mdl-36232708

Silver Phosphate, Ag3PO4, being a highly capable clinical molecule, an ultrasonic method was employed to synthesize the M-Ag3PO4, (M = Se, Ag, Ta) nanoparticles which were evaluated for antibacterial and cytotoxicity activities post-characterization. Escherichia coli and Staphylococcus aureus were used for antibacterial testing and the effects of sonication on bacterial growth with sub-MIC values of M-Ag3PO4 nanoparticles were examined. The effect of M-Ag3PO4 nanoparticles on human colorectal carcinoma cells (HCT-116) and human cervical carcinoma cells (HeLa cells) was examined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay and DAPI (4',6-diamidino-2-phenylindole) staining. Additionally, we analyzed the effect of nanoparticles on normal and non-cancerous human embryonic kidney cells (HEK-293). Ag-Ag3PO4 exhibited enhanced antibacterial activity followed by Ta-Ag3PO4, Ag3PO4, and Se-Ag3PO4 nanoparticles against E. coli. Whereas the order of antibacterial activity against Staphylococcus aureus was Ag3PO4 > Ag-Ag3PO4 > Ta-Ag3PO4 > Se-Ag3PO4, respectively. Percentage inhibition of E. coli was 98.27, 74.38, 100, and 94.2%, while percentage inhibition of S. aureus was 25.53, 80.28, 99.36, and 20.22% after treatment with Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4, respectively. The MTT assay shows a significant decline in the cell viability after treating with M-Ag3PO4 nanoparticles. The IC50 values for Ag3PO4, Se-Ag3PO4, Ag-Ag3PO4, and Ta-Ag3PO4 on HCT-116 were 39.44, 28.33, 60.24, 58.34 µg/mL; whereas for HeLa cells, they were 65.25, 61.27, 75.52, 72.82 µg/mL, respectively. M-Ag3PO4 nanoparticles did not inhibit HEK-293 cells. Apoptotic assay revealed that the numbers of DAPI stained cells were significantly lower in the M-Ag3PO4-treated cells versus control.


Metal Nanoparticles , Nanoparticles , Anti-Bacterial Agents/pharmacology , Bromides/pharmacology , Escherichia coli , HEK293 Cells , HeLa Cells , Humans , Staphylococcus aureus
...