Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Nutr ; 43(7): 1832-1849, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878554

RESUMEN

BACKGROUND AND AIMS: Microbiota plays an essential role in maintaining body health, through positive influences on metabolic, defensive, and trophic processes and on intercellular communication. Imbalance in intestinal flora, with the proliferation of harmful bacterial species (dysbiosis) is consistently reported in chronic illnesses, including neurodegenerative diseases (ND). Correcting dysbiosis can have a beneficial impact on the symptoms and evolution of ND. This review examines the effects of microbiota modulation through administration of probiotics, prebiotics, symbiotics, or prebiotics' metabolites (postbiotics) in patients with ND like multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). METHODS: PubMed, Web of Science, Medline databases and ClinicalTrials.gov registry searches were performed using pre-/pro-/postbiotics and ND-related terms. Further references were obtained by checking relevant articles. RESULTS: Although few compared to animal studies, the human studies generally show positive effects on disease-specific symptoms, overall health, metabolic parameters, on oxidative stress and immunological markers. Therapy with probiotics in various forms (mixtures of bacterial strains, fecal microbiota transplant, diets rich in fermented foods) exert favorable effects on patients' mental health, cognition, and quality of life, targeting pathogenetic ND mechanisms and inducing reparatory mechanisms at the cellular level. More encouraging results have been observed in prebiotic/postbiotic therapy in some ND. CONCLUSIONS: The effects of probiotic-related interventions depend on the patients' ND stage and pre-existing allopathic medication. Further studies on larger cohorts and long term comprehensive neuropsychiatric, metabolic, biochemical testing, and neuroimaging monitoring are necessary to optimize therapeutic protocols in ND.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Prebióticos , Probióticos , Humanos , Microbioma Gastrointestinal/fisiología , Enfermedades Neurodegenerativas/microbiología , Enfermedades Neurodegenerativas/terapia , Probióticos/administración & dosificación , Probióticos/uso terapéutico , Prebióticos/administración & dosificación , Disbiosis/terapia , Disbiosis/microbiología , Animales , Trasplante de Microbiota Fecal
2.
Int J Mol Sci ; 24(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37108107

RESUMEN

A great deal of evidence supports the inevitable importance of spinal glycinergic inhibition in the development of chronic pain conditions. However, it remains unclear how glycinergic neurons contribute to the formation of spinal neural circuits underlying pain-related information processing. Thus, we intended to explore the synaptic targets of spinal glycinergic neurons in the pain processing region (laminae I-III) of the spinal dorsal horn by combining transgenic technology with immunocytochemistry and in situ hybridization accompanied by light and electron microscopy. First, our results suggest that, in addition to neurons in laminae I-III, glycinergic neurons with cell bodies in lamina IV may contribute substantially to spinal pain processing. On the one hand, we show that glycine transporter 2 immunostained glycinergic axon terminals target almost all types of excitatory and inhibitory interneurons identified by their neuronal markers in laminae I-III. Thus, glycinergic postsynaptic inhibition, including glycinergic inhibition of inhibitory interneurons, must be a common functional mechanism of spinal pain processing. On the other hand, our results demonstrate that glycine transporter 2 containing axon terminals target only specific subsets of axon terminals in laminae I-III, including nonpeptidergic nociceptive C fibers binding IB4 and nonnociceptive myelinated A fibers immunoreactive for type 1 vesicular glutamate transporter, indicating that glycinergic presynaptic inhibition may be important for targeting functionally specific subpopulations of primary afferent inputs.


Asunto(s)
Proteínas de Transporte de Glicina en la Membrana Plasmática , Células del Asta Posterior , Humanos , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Células del Asta Posterior/metabolismo , Neuronas/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Dolor/metabolismo , Médula Espinal/metabolismo
3.
Elife ; 112022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35929607

RESUMEN

Today septins are considered as the fourth component of the cytoskeleton, with the Septin7 isoform playing a critical role in the formation of higher-order structures. While its importance has already been confirmed in several intracellular processes of different organs, very little is known about its role in skeletal muscle. Here, using Septin7 conditional knockdown (KD) mouse model, the C2C12 cell line, and enzymatically isolated adult muscle fibers, the organization and localization of septin filaments are revealed, and an ontogenesis-dependent expression of Septin7 is demonstrated. KD mice displayed a characteristic hunchback phenotype with skeletal deformities, reduction in in vivo and in vitro force generation, and disorganized mitochondrial networks. Furthermore, knockout of Septin7 in C2C12 cells resulted in complete loss of cell division while KD cells provided evidence that Septin7 is essential for proper myotube differentiation. These and the transient increase in Septin7 expression following muscle injury suggest that it may be involved in muscle regeneration and development.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Animales , Diferenciación Celular , Ratones , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Septinas/genética , Septinas/metabolismo
4.
Int J Mol Sci ; 23(9)2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35563567

RESUMEN

Beige adipocytes with thermogenic function are activated during cold exposure in white adipose tissue through the process of browning. These cells, similar to brown adipocytes, dissipate stored chemical energy in the form of heat with the help of uncoupling protein 1 (UCP1). Recently, we have shown that tissue transglutaminase (TG2) knock-out mice have decreased cold tolerance in parallel with lower utilization of their epididymal adipose tissue and reduced browning. To learn more about the thermogenic function of this fat depot, we isolated preadipocytes from the epididymal adipose tissue of wild-type and TG2 knock-out mice and differentiated them in the beige direction. Although differentiation of TG2 knock-out preadipocytes is phenotypically similar to the wild-type cells, the mitochondria of the knock-out beige cells have multiple impairments including an altered electron transport system generating lower electrochemical potential difference, reduced oxygen consumption, lower UCP1 protein content, and a higher portion of fragmented mitochondria. Most of these differences are present in preadipocytes as well, and the differentiation process cannot overcome the functional disadvantages completely. TG2 knock-out beige adipocytes produce more iodothyronine deiodinase 3 (DIO3) which may inactivate thyroid hormones required for the establishment of optimal mitochondrial function. The TG2 knock-out preadipocytes and beige cells are both hypometabolic as compared with the wild-type controls which may also be explained by the lower expression of solute carrier proteins SLC25A45, SLC25A47, and SLC25A42 which transport acylcarnitine, Co-A, and amino acids into the mitochondrial matrix. As a consequence, the mitochondria in TG2 knock-out beige adipocytes probably cannot reach the energy-producing threshold required for normal thermogenic functions, which may contribute to the decreased cold tolerance of TG2 knock-out mice.


Asunto(s)
Proteína Glutamina Gamma Glutamiltransferasa 2 , Termogénesis , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Termogénesis/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
5.
J Thromb Haemost ; 20(5): 1223-1235, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35146910

RESUMEN

BACKGROUND: Platelets contain a high amount of potentially active A subunit dimer of coagulation factor XIII (cellular FXIII; cFXIII). It is of cytoplasmic localization, not secreted, but becomes translocated to the surface of platelets activated by convulxin and thrombin (CVX+Thr). OBJECTIVE: To explore the difference in cFXIII translocation between receptor mediated and non-receptor mediated platelet activation and if translocation can also be detected on platelet-derived microparticles. Our aim was also to shed some light on the mechanism of cFXIII translocation. METHODS: Gel-filtered platelets were activated by CVX+Thr or Ca2+ -ionophore (calcimycin). The translocation of cFXIII and phosphatidylserine (PS) to the surface of activated platelets and platelet-derived microparticles was investigated by flow cytometry, immunofluorescence, and immune electron microscopy. Fluo-4-AM fluorescence was used for the measurement of intracellular Ca2+ concentration. RESULTS: Receptor mediated activation by CVX+Thr exposed cFXIII to the surface of more than 60% of platelets. Electron microscopy revealed microparticles with preserved membrane structure and microparticles devoid of labeling for membrane glycoprotein CD41a. cFXIII was observed on both types of microparticles but was more abundant in the absence of CD41a. Rhosin, a RhoA inhibitor, significantly decreased cFXIII translocation. Non-receptor mediated activation of platelets by calcimycin elevated intracellular Ca2+ concentration, induced the translocation of PS to the surface of platelets and microparticles, but failed to expose cFXIII. CONCLUSIONS: The elevation of intracellular Ca2+ concentration is sufficient for the translocation of PS from the internal layer of the membrane, while the translocation of cFXIII from the platelet cytoplasm requires additional receptor mediated mechanism(s).


Asunto(s)
Micropartículas Derivadas de Células , Factor XIII , Plaquetas , Calcimicina/farmacología , Proteínas Portadoras , Humanos , Fosfatidilserinas , Activación Plaquetaria , Trombina/farmacología
6.
J Comp Neurol ; 530(3): 607-626, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34382691

RESUMEN

A growing body of experimental evidence shows that glycinergic inhibition plays vital roles in spinal pain processing. In spite of this, however, our knowledge about the morphology, neurochemical characteristics, and synaptic relations of glycinergic neurons in the spinal dorsal horn is very limited. The lack of this knowledge makes our understanding about the specific contribution of glycinergic neurons to spinal pain processing quite vague. Here we investigated the morphology and neurochemical characteristics of glycinergic neurons in laminae I-IV of the spinal dorsal horn using a GlyT2::CreERT2-tdTomato transgenic mouse line. Confirming previous reports, we show that glycinergic neurons are sparsely distributed in laminae I-II, but their densities are much higher in lamina III and especially in lamina IV. First in the literature, we provide experimental evidence indicating that in addition to neurons in which glycine colocalizes with GABA, there are glycinergic neurons in laminae I-II that do not express GABA and can thus be referred to as glycine-only neurons. According to the shape and size of cell bodies and dendritic morphology, we divided the tdTomato-labeled glycinergic neurons into three and six morphological groups in laminae I-II and laminae III-IV, respectively. We also demonstrate that most of the glycinergic neurons co-express neuronal nitric oxide synthase, parvalbumin, the receptor tyrosine kinase RET, and the retinoic acid-related orphan nuclear receptor ß (RORß), but there might be others that need further neurochemical characterization. The present findings may foster our understanding about the contribution of glycinergic inhibition to spinal pain processing.


Asunto(s)
Neuronas , Asta Dorsal de la Médula Espinal , Animales , Glicina , Ratones , Parvalbúminas , Células del Asta Posterior , Médula Espinal
7.
Cells ; 10(6)2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199944

RESUMEN

PARP2 is a DNA repair protein. The deletion of PARP2 induces mitochondrial biogenesis and mitochondrial activity by increasing NAD+ levels and inducing SIRT1 activity. We show that the silencing of PARP2 causes mitochondrial fragmentation in myoblasts. We assessed multiple pathways that can lead to mitochondrial fragmentation and ruled out the involvement of mitophagy, the fusion-fission machinery, SIRT1, and mitochondrial unfolded protein response. Nevertheless, mitochondrial fragmentation was reversed by treatment with strong reductants, such as reduced glutathione (GSH), N-acetyl-cysteine (NAC), and a mitochondria-specific antioxidant MitoTEMPO. The effect of MitoTEMPO on mitochondrial morphology indicates the production of reactive oxygen species of mitochondrial origin. Elimination of reactive oxygen species reversed mitochondrial fragmentation in PARP2-silenced cells.


Asunto(s)
Silenciador del Gen , Mitocondrias , Dinámicas Mitocondriales/genética , Poli(ADP-Ribosa) Polimerasas , Especies Reactivas de Oxígeno/metabolismo , Células Hep G2 , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
8.
Environ Technol ; 42(24): 3725-3735, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32134365

RESUMEN

The fungus Aspergillus oryzae could be shown to be a viable alternative for biosorption of valuable metals from solution. Fungal biomass can be obtained easily in high quantities as a waste of biofermentation processes, and used in a complex, multi-phase solution mimicking naturally occurring, mining-affected water samples. With test solution formulated after natural conditions, formation of secondary Al and Fe phases co-precipitating Ce was recorded in addition to specific biosorption of rare earth elements. Remarkably, the latter were removed from the solution despite the presence of high concentrations of interfering Fe and Al. The biomass was viable even after prolonged incubation in the metal solution, and minimal inhibitory concentrations for single metals were higher than those in the test solution. While precipitation/biosorption of Ce (maximal biosorption efficiency was 58.0 ± 22.3% after 6 h of incubation) coincided with the gross removal of Fe from the metal solution, Y (81.5 ± 11.3% efficiency, 24 h incubation) and Nd (87.4 ± 9.1% efficiency, 24 h incubation) were sequestered later, similarly to Ni and Zn. The biphasic binding pattern specific to single metals could be connected to dynamically changing pH and NH4+ concentrations, which were attributed to the physiological changes taking place in starving A. oryzae biomass. The metals were found extracellularly in minerals associated with the cell wall, and intracellularly precipitated in the vacuoles. The latter process was explained with intracellular metal detoxification resulting in metal resistance.


Asunto(s)
Aspergillus oryzae , Metales Pesados , Adsorción , Biomasa , Concentración de Iones de Hidrógeno
9.
J Immunol Methods ; 487: 112877, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33031793

RESUMEN

One of the most abundant coagulation proteins is ß2-glycoprotein I (ß2GPI) that is present in humans at a concentration of around 200 mg/L. Its physiological role is only partially understood, but it adopts several different structural forms the majority of which are the open and closed forms. We isolated native (circular) ß2GPI and converted it into an open conformation. The effectiveness of these procedures was assessed by Western blot and negative-staining electron microscopy. We found that in coagulation assays the open form of ß2GPI had a significant prolonging effect on fibrin formation in a dilute prothrombin time test (p < 0.001). In the dilute activated partial thromboplastin time test, both conformations had a significant prolonging effect (p < 0.001) but the open conformation was more effective. In a fluorescent thrombin generation assay both conformations slightly delayed thrombin generation with no significant effect on the quantity of formed thrombin. By using surface plasmon resonance assays, the equilibrium dissociation constants of both the open and closed conformations of ß2GPI showed a similar and strong affinity to isolated anti-ß2GPI autoantibodies (Kd closed ß2GPI = 5.17 × 10-8 M, Kd open ß2GPI = 5.56 × 10-8 M) and the open form had one order of magnitude stronger affinity to heparin (Kd = 0.30 × 10-6 M) compared to the closed conformation (Kd = 3.50 × 10-6 M). The two different forms of ß2GPI have distinct effects in functional tests and in ligand binding, which may considerably affect the intravascular events related to this abundant plasma protein in health and disease.


Asunto(s)
Coagulación Sanguínea , beta 2 Glicoproteína I/metabolismo , Anticoagulantes/farmacología , Autoanticuerpos/metabolismo , Sitios de Unión de Anticuerpos , Coagulación Sanguínea/efectos de los fármacos , Fibrina/metabolismo , Heparina/farmacología , Humanos , Ligandos , Tiempo de Tromboplastina Parcial , Conformación Proteica , Tiempo de Protrombina , Relación Estructura-Actividad , Trombina/metabolismo , beta 2 Glicoproteína I/antagonistas & inhibidores , beta 2 Glicoproteína I/química , beta 2 Glicoproteína I/inmunología
10.
Sci Rep ; 10(1): 11715, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678166

RESUMEN

Although convincing experimental evidence indicates that Na+/K+/Cl- cotransporter 1 (NKCC1) is involved in spinal nociceptive information processing and in the generation of hyperalgesia and allodynia in chronic pain states, the cellular distribution of NKCC1 in the superficial spinal dorsal horn is still poorly understood. Because this important piece of knowledge is missing, the effect of NKCC1 on pain processing is still open to conflicting interpretations. In this study, to provide the missing experimental data, we investigated the cellular distribution of NKCC1 in the superficial spinal dorsal horn by immunohistochemical methods. We demonstrated for the first time that almost all spinal axon terminals of peptidergic nociceptive primary afferents express NKCC1. In contrast, virtually all spinal axon terminals of nonpeptidergic nociceptive primary afferents were negative for NKCC1. Data on the colocalization of NKCC1 with axonal and glial markers indicated that it is almost exclusively expressed by axon terminals and glial cells in laminae I-IIo. In lamina IIi, however, we observed a strong immunostaining for NKCC1 also in the dendrites and cell bodies of PV-containing inhibitory neurons and a weak staining in PKCγ-containing excitatory neurons. Our results facilitate further thinking about the role of NKCC1 in spinal pain processing.


Asunto(s)
Neuroglía/metabolismo , Células del Asta Posterior/metabolismo , Transducción de Señal/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Asta Dorsal de la Médula Espinal/citología , Animales , Dolor Crónico/metabolismo , Técnicas de Inactivación de Genes , Hiperalgesia/metabolismo , Inmunohistoquímica , Ratones , Ratones Noqueados , Terminales Presinápticos/metabolismo , Ratas , Ratas Wistar , Miembro 2 de la Familia de Transportadores de Soluto 12/genética
11.
Int J Mol Sci ; 21(6)2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32183173

RESUMEN

Increased oxidative stress and mitochondrial damage are observed in protein aggregation diseases, such as age-related macular degeneration (AMD). We have recently reported elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in the retinal pigment epithelial cells (RPE) of the dry AMD-resembling NFE2L2/PGC1α double knockout (dKO) mouse model. Here, we provide evidence of a disturbance in the autolysosomal machinery handling mitochondrial clearance in the RPE cells of one-year-old NFE2L2/PGC1α-deficient mice. Confocal immunohistochemical analysis revealed an upregulation of autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as numerous mitophagy markers, such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN) together with damaged mitochondria. However, we detected no evidence of increased autolysosome formation in transmission electron micrographs or of colocalization of lysosomal marker LAMP2 (lysosome-associated membrane protein 2) and the mitochondrial marker ATP synthase ß in confocal micrographs. Interestingly, we observed an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells together with autofluorescence aggregates. Our results reveal that there is at least a relative decrease of mitophagy in the RPE cells of NFE2L2/PGC1α dKO mice. This further supports the hypothesis that mitophagy is a putative therapy target in AMD-like pathology.


Asunto(s)
Degeneración Macular/metabolismo , Mitofagia , Factor 2 Relacionado con NF-E2/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Epitelio Pigmentado de la Retina/metabolismo , Animales , Eliminación de Gen , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Lisosomas/ultraestructura , Degeneración Macular/genética , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Quinasas/metabolismo , Epitelio Pigmentado de la Retina/ultraestructura , Ubiquitina-Proteína Ligasas/metabolismo
12.
Cells ; 9(2)2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046043

RESUMEN

Poly(ADP-Ribose) polymerases (PARPs) are enzymes that metabolize NAD+. PARP1 and PARP10 were previously implicated in the regulation of autophagy. Here we showed that cytosolic electron-dense particles appear in the cytoplasm of C2C12 myoblasts in which PARP2 is silenced by shRNA. The cytosolic electron-dense bodies resemble autophagic vesicles and, in line with that, we observed an increased number of LC3-positive and Lysotracker-stained vesicles. Silencing of PARP2 did not influence the maximal number of LC3-positive vesicles seen upon chloroquine treatment or serum starvation, suggesting that the absence of PARP2 inhibits autophagic breakdown. Silencing of PARP2 inhibited the activity of AMP-activated kinase (AMPK) and the mammalian target of rapamycin complex 2 (mTORC2). Treatment of PARP2-silenced C2C12 cells with AICAR, an AMPK activator, nicotinamide-riboside (an NAD+ precursor), or EX-527 (a SIRT1 inhibitor) decreased the number of LC3-positive vesicles cells to similar levels as in control (scPARP2) cells, suggesting that these pathways inhibit autophagic flux upon PARP2 silencing. We observed a similar increase in the number of LC3 vesicles in primary PARP2 knockout murine embryonic fibroblasts. We provided evidence that the enzymatic activity of PARP2 is important in regulating autophagy. Finally, we showed that the silencing of PARP2 induces myoblast differentiation. Taken together, PARP2 is a positive regulator of autophagic breakdown in mammalian transformed cells and its absence blocks the progression of autophagy.


Asunto(s)
Autofagia , Silenciador del Gen , Poli(ADP-Ribosa) Polimerasas/genética , Proteolisis , Adenilato Quinasa/metabolismo , Animales , Autofagia/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Cloroquina/farmacología , Medio de Cultivo Libre de Suero , Citosol/metabolismo , Citosol/ultraestructura , Embrión de Mamíferos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Eliminación de Gen , Silenciador del Gen/efectos de los fármacos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Desarrollo de Músculos/efectos de los fármacos , NAD/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteolisis/efectos de los fármacos , Sirtuina 1/metabolismo
13.
Cancers (Basel) ; 12(1)2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31861350

RESUMEN

Keratinocytes provide the first line of defense of the human body against carcinogenic ultraviolet (UV) radiation. Acute and chronic UVB-mediated cellular responses were widely studied. However, little is known about the role of mitochondrial regulation in UVB-induced DNA damage. Here, we show that poly (ADP-ribose) polymerase 1 (PARP1) and ataxia-telangiectasia-mutated (ATM) kinase, two tumor suppressors, are important regulators in mitochondrial alterations induced by UVB. Our study demonstrates that PARP inhibition by ABT-888 upon UVB treatment exacerbated cyclobutane pyrimidine dimers (CPD) accumulation, cell cycle block and cell death and reduced cell proliferation in premalignant skin keratinocytes. Furthermore, in human keratinocytes UVB enhanced oxidative phosphorylation (OXPHOS) and autophagy which were further induced upon PARP inhibition. Immunoblot analysis showed that these cellular responses to PARP inhibition upon UVB irradiation strongly alter the phosphorylation level of ATM, adenosine monophosphate-activated kinase (AMPK), p53, protein kinase B (AKT), and mammalian target of rapamycin (mTOR) proteins. Furthermore, chemical inhibition of ATM led to significant reduction in AMPK, p53, AKT, and mTOR activation suggesting the central role of ATM in the UVB-mediated mitochondrial changes. Our results suggest a possible link between UVB-induced DNA damage and metabolic adaptations of mitochondria and reveal the OXPHOS-regulating role of autophagy which is dependent on key metabolic and DNA damage regulators downstream of PARP1 and ATM.

14.
Cell Death Dis ; 10(6): 439, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31165747

RESUMEN

Transglutaminase 2 (TG2) is a multifunctional protein that promotes clearance of apoptotic cells (efferocytosis) acting as integrin ß3 coreceptor. Accumulating evidence indicates that defective efferocytosis contributes to the development of chronic inflammatory diseases. Obesity is characterized by the accumulation of dead adipocytes and inflammatory macrophages in the adipose tissue leading to obesity-related metabolic syndrome. Here, we report that loss of TG2 from bone marrow-derived cells sensitizes for high fat diet (HFD)-induced pathologies. We find that metabolically activated TG2 null macrophages express more phospho-Src and integrin ß3, unexpectedly clear dying adipocytes more efficiently via lysosomal exocytosis, but produce more pro-inflammatory cytokines than the wild type ones. Anti-inflammatory treatment with an LXR agonist reverts the HFD-induced phenotype in mice lacking TG2 in bone marrow-derived cells with less hepatic steatosis than in wild type mice proving enhanced lipid clearance. Thus it is interesting to speculate whether LXR agonist treatment together with enhancing lysosomal exocytosis could be a beneficial therapeutic strategy in obesity.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Inflamación/metabolismo , Resistencia a la Insulina/genética , Macrófagos/metabolismo , Obesidad/metabolismo , Transglutaminasas/metabolismo , Células 3T3 , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Apoptosis/genética , Benzoatos/administración & dosificación , Bencilaminas/administración & dosificación , Citocinas/metabolismo , Dieta Alta en Grasa , Hígado Graso/enzimología , Hígado Graso/genética , Hígado Graso/metabolismo , Proteínas de Unión al GTP/genética , Inflamación/inmunología , Receptores X del Hígado/agonistas , Lisosomas/efectos de los fármacos , Lisosomas/genética , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/etiología , Obesidad/genética , Proteína Glutamina Gamma Glutamiltransferasa 2 , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Transducción de Señal/genética , Transglutaminasas/genética , Triglicéridos/metabolismo
15.
Biochem Pharmacol ; 167: 76-85, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31251940

RESUMEN

Mitochondrial biogenesis is a key feature of energy expenditure and organismal energy balance. Genetic deletion of PARP1 or PARP2 was shown to induce mitochondrial biogenesis and energy expenditure. In line with that, PARP inhibitors were shown to induce energy expenditure in skeletal muscle. We aimed to investigate whether pharmacological inhibition of PARPs induces brown or beige adipocyte differentiation. SVF fraction of human pericardial adipose tissue was isolated and human adipose-derived mesenchymal stem cells (hADMSCs) were differentiated to white and beige adipocytes. A subset of hADMSCs were differentiated to white adipocytes in the presence of Olaparib, a potent PARP inhibitor currently in clinical use, to induce browning. Olaparib induced morphological changes (smaller lipid droplets) in white adipocytes that is a feature of brown/beige adipocytes. Furthermore, Olaparib induced mitochondrial biogenesis in white adipocytes and enhanced UCP1 expression. We showed that Olaparib treatment inhibited nuclear and cytosolic PAR formation, induced NAD+/NADH ratio and consequently boosted SIRT1 and AMPK activity and the downstream transcriptional program leading to increases in OXPHOS. Olaparib treatment did not induce the expression of beige adipocyte markers in white adipocytes, suggesting the formation of brown or brown-like adipocytes. PARP1, PARP2 and tankyrases are key players in the formation of white adipose tissue. Hereby, we show that PARP inhibition induces the transdifferentiation of white adipocytes to brown-like adipocytes suggesting that PARP activity could be a determinant of the differentiation of these adipocyte lineages.


Asunto(s)
Adipocitos Marrones/metabolismo , Adipocitos Blancos/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Adipocitos Marrones/efectos de los fármacos , Adipocitos Blancos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Células Cultivadas , Humanos
16.
FEBS Open Bio ; 9(3): 446-456, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30868053

RESUMEN

One of the major roles of professional phagocytes is the removal of dead cells in the body. We know less about the clearance of necrotic cells than apoptotic cell phagocytosis, despite the fact that both types of dead cells need to be cleared together and necrotic cells appear often in pathological settings. In the present study, we examined phagocytosis of heat- or H2O2-killed necrotic and apoptotic thymocytes by mouse bone marrow-derived macrophages (BMDMs) in vitro and found that the two cell types are engulfed at equal efficiency and compete with each other when added together to BMDMs. Phagocytosis of both apoptotic and necrotic thymocytes was decreased by (a) blocking phosphatidylserine on the surface of dying cells; (b) inhibition of Mer tyrosine kinase, Tim-4, integrin ß3 receptor signaling, or Ras-related C3 botulinum toxin substrate 1 activity; or (c) using BMDMs deficient for transglutaminase 2. Stimulation of liver X, retinoid X, retinoic acid or glucocorticoid nuclear receptors in BMDMs enhanced not only apoptotic, but also necrotic cell uptake. Electron microscopic analysis of the engulfment process revealed that the morphology of phagosomes and the phagocytic cup formed during the uptake of dying thymocytes is similar for apoptotic and necrotic cells. Our data indicate that apoptotic and necrotic cells are cleared via the same mechanisms, and removal of necrotic cells in vivo can be facilitated by molecules known to enhance the uptake of apoptotic cells.


Asunto(s)
Apoptosis , Macrófagos/metabolismo , Necrosis/metabolismo , Fosfatidilserinas/metabolismo , Timocitos/metabolismo , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Calor , Peróxido de Hidrógeno/farmacología , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfatidilserinas/antagonistas & inhibidores , Timocitos/efectos de los fármacos
17.
Sci Rep ; 8(1): 13715, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30194313

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

18.
Sci Rep ; 8(1): 10562, 2018 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-30002493

RESUMEN

Accumulating evidence supports the role of astrocytes in endocannabinoid mediated modulation of neural activity. It has been reported that some astrocytes express the cannabinoid type 1 receptor (CB1-R), the activation of which is leading to Ca2+ mobilization from internal stores and a consecutive release of glutamate. It has also been documented that astrocytes have the potential to produce the endocannabinoid 2-arachidonoylglycerol, one of the best known CB1-R agonist. However, no relationship between CB1-R activation and 2-arachidonoylglycerol production has ever been demonstrated. Here we show that rat spinal astrocytes co-express CB1-Rs and the 2-arachidonoylglycerol synthesizing enzyme, diacylglycerol lipase-alpha in close vicinity to each other. We also demonstrate that activation of CB1-Rs induces a substantial elevation of intracellular Ca2+ concentration in astrocytes. Finally, we provide evidence that the evoked Ca2+ transients lead to the production of 2-arachidonoylglycerol in cultured astrocytes. The results provide evidence for a novel cannabinoid induced endocannabinoid release mechanism in astrocytes which broadens the bidirectional signaling repertoire between astrocytes and neurons.


Asunto(s)
Ácidos Araquidónicos/metabolismo , Astrocitos/metabolismo , Calcio/metabolismo , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Receptor Cannabinoide CB1/metabolismo , Animales , Comunicación Celular , Células Cultivadas , Lipoproteína Lipasa/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Cultivo Primario de Células , Ratas , Ratas Endogámicas WKY , Receptor Cannabinoide CB1/genética , Asta Dorsal de la Médula Espinal/citología , Asta Dorsal de la Médula Espinal/metabolismo
19.
J Neurosci ; 38(35): 7683-7700, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30054395

RESUMEN

Aging contributes to cellular stress and neurodegeneration. Our understanding is limited regarding the tissue-restricted mechanisms providing protection in postmitotic cells throughout life. Here, we show that spinal cord motoneurons exhibit a high abundance of asymmetric dimethyl arginines (ADMAs) and the presence of this posttranslational modification provides protection against environmental stress. We identify protein arginine methyltransferase 8 (PRMT8) as a tissue-restricted enzyme responsible for proper ADMA level in postmitotic neurons. Male PRMT8 knock-out mice display decreased muscle strength with aging due to premature destabilization of neuromuscular junctions. Mechanistically, inhibition of methyltransferase activity or loss of PRMT8 results in accumulation of unrepaired DNA double-stranded breaks and decrease in the cAMP response-element-binding protein 1 (CREB1) level. As a consequence, the expression of CREB1-mediated prosurvival and regeneration-associated immediate early genes is dysregulated in aging PRMT8 knock-out mice. The uncovered role of PRMT8 represents a novel mechanism of stress tolerance in long-lived postmitotic neurons and identifies PRMT8 as a tissue-specific therapeutic target in the prevention of motoneuron degeneration.SIGNIFICANCE STATEMENT Although most of the cells in our body have a very short lifespan, postmitotic neurons must survive for many decades. Longevity of a cell within the organism depends on its ability to properly regulate signaling pathways that counteract perturbations, such as DNA damage, oxidative stress, or protein misfolding. Here, we provide evidence that tissue-specific regulators of stress tolerance exist in postmitotic neurons. Specifically, we identify protein arginine methyltransferase 8 (PRMT8) as a cell-type-restricted arginine methyltransferase in spinal cord motoneurons (MNs). PRMT8-dependent arginine methylation is required for neuroprotection against age-related increased of cellular stress. Tissue-restricted expression and the enzymatic activity of PRMT8 make it an attractive target for drug development to delay the onset of neurodegenerative disorders.


Asunto(s)
Daño del ADN/fisiología , Neuronas Motoras/enzimología , Proteína-Arginina N-Metiltransferasas/fisiología , Envejecimiento/metabolismo , Secuencia de Aminoácidos , Animales , Arginina/análogos & derivados , Arginina/metabolismo , Línea Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Roturas del ADN de Doble Cadena , Reparación del ADN , Contracción Isométrica , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Células Musculares/enzimología , Células Musculares/fisiología , Unión Neuromuscular/metabolismo , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/deficiencia , Proteína-Arginina N-Metiltransferasas/genética , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Proteínas Recombinantes de Fusión/metabolismo , Reflejo Anormal , Prueba de Desempeño de Rotación con Aceleración Constante , Médula Espinal/citología , Médula Espinal/crecimiento & desarrollo
20.
PLoS One ; 13(1): e0187789, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29293500

RESUMEN

Poly(ADP-ribose) polymerase (PARP)10 is a PARP family member that performs mono-ADP-ribosylation of target proteins. Recent studies have linked PARP10 to metabolic processes and metabolic regulators that prompted us to assess whether PARP10 influences mitochondrial oxidative metabolism. The depletion of PARP10 by specific shRNAs increased mitochondrial oxidative capacity in cellular models of breast, cervical, colorectal and exocrine pancreas cancer. Upon silencing of PARP10, mitochondrial superoxide production decreased in line with increased expression of antioxidant genes pointing out lower oxidative stress upon PARP10 silencing. Improved mitochondrial oxidative capacity coincided with increased AMPK activation. The silencing of PARP10 in MCF7 and CaCo2 cells decreased the proliferation rate that correlated with increased expression of anti-Warburg enzymes (Foxo1, PGC-1α, IDH2 and fumarase). By analyzing an online database we showed that lower PARP10 expression increases survival in gastric cancer. Furthermore, PARP10 expression decreased upon fasting, a condition that is characterized by increases in mitochondrial biogenesis. Finally, lower PARP10 expression is associated with increased fatty acid oxidation.


Asunto(s)
Mitocondrias/fisiología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Adenilato Quinasa/metabolismo , Animales , Western Blotting , Línea Celular , Proliferación Celular/fisiología , Electroforesis en Gel de Poliacrilamida , Silenciador del Gen , Humanos , Masculino , Ratones Endogámicos C57BL , Oxidación-Reducción , Estrés Oxidativo , Consumo de Oxígeno , Poli(ADP-Ribosa) Polimerasas/genética , Proteínas Proto-Oncogénicas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...