Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(1): 113605, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38127622

RESUMEN

Despite the symmetrical structure of nucleosomes, in vitro studies have shown that transcription proceeds with different efficiency depending on the orientation of the DNA sequence around them. However, it is unclear whether this functional asymmetry is present in vivo and whether it could regulate transcriptional directionality. Here, we report that the proximal and distal halves of nucleosomal DNA contribute differentially to nucleosome stability in the genome. In +1 nucleosomes, this asymmetry facilitates or hinders transcription depending on the orientation of its underlying DNA, and this difference is associated with an asymmetrical interaction between DNA and histones. These properties are encoded in the DNA signature of +1 nucleosomes, since its incorporation in the two orientations into downstream nucleosomes renders them asymmetrically accessible to MNase and inverts the balance between sense and antisense transcription. Altogether, our results show that nucleosomal DNA endows nucleosomes with asymmetrical properties that modulate the directionality of transcription.


Asunto(s)
Histonas , Nucleosomas , Histonas/metabolismo , ADN/metabolismo , Genoma , Motivos de Nucleótidos
2.
Cell ; 186(24): 5237-5253.e22, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37944512

RESUMEN

Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs.


Asunto(s)
Cromosomas Artificiales de Levadura , Genoma Fúngico , Saccharomyces cerevisiae , Perfilación de la Expresión Génica , Proteómica , Saccharomyces cerevisiae/genética , Biología Sintética , ARN de Transferencia/genética , Cromosomas Artificiales de Levadura/genética
3.
Genetics ; 222(1)2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35866610

RESUMEN

The stability of the genome is occasionally challenged by the formation of DNA-RNA hybrids and R-loops, which can be influenced by the chromatin context. This is mainly due to the fact that DNA-RNA hybrids hamper the progression of replication forks, leading to fork stalling and, ultimately, DNA breaks. Through a specific screening of chromatin modifiers performed in the yeast Saccharomyces cerevisiae, we have found that the Rtt109 histone acetyltransferase is involved in several steps of R-loop-metabolism and their associated genetic instability. On the one hand, Rtt109 prevents DNA-RNA hybridization by the acetylation of histone H3 lysines 14 and 23 and, on the other hand, it is involved in the repair of replication-born DNA breaks, such as those that can be caused by R-loops, by acetylating lysines 14 and 56. In addition, Rtt109 loss renders cells highly sensitive to replication stress in combination with R-loop-accumulating THO-complex mutants. Our data evidence that the chromatin context simultaneously influences the occurrence of DNA-RNA hybrid-associated DNA damage and its repair, adding complexity to the source of R-loop-associated genetic instability.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Acetilación , Cromatina , Replicación del ADN , Inestabilidad Genómica , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Homeostasis , Estructuras R-Loop , ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Cell Rep ; 38(2): 110201, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35021102

RESUMEN

Homologous recombination is essential to maintain genome stability in response to DNA damage. Here, we have used genome-wide sequencing to quantitatively analyze at nucleotide resolution the dynamics of DNA end resection, re-synthesis, and gene conversion at a double-strand break. Resection initiates asymmetrically in an MRX-independent manner before proceeding steadily in both directions. Sgs1, Exo1, Rad51, and Srs2 differently regulate the rate and symmetry of early and late resection. Exo1 also ensures the coexistence of resection and re-synthesis, while Srs2 guarantees a constant and symmetrical DNA re-polymerization. Gene conversion is MMR independent, spans only a minor fraction of the resected region, and its unidirectionality depends on Srs2. Finally, these repair factors prevent the development of alterations remote from the DNA lesion, such as subtelomeric instability, duplication of genomic regions, and over-replication of Ty elements. Altogether, this approach allows a quantitative analysis and a direct genome-wide visualization of DNA repair by homologous recombination.


Asunto(s)
Reparación del ADN por Recombinación/genética , Reparación del ADN por Recombinación/fisiología , Roturas del ADN de Doble Cadena , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN/genética , Reparación del ADN/fisiología , Replicación del ADN , Exodesoxirribonucleasas/genética , Estudio de Asociación del Genoma Completo , Inestabilidad Genómica , Recombinasa Rad51/genética , RecQ Helicasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN/métodos
5.
Nat Struct Mol Biol ; 26(10): 970-979, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31582854

RESUMEN

Cohesin is a regulator of genome architecture with roles in sister chromatid cohesion and chromosome compaction. The recruitment and mobility of cohesin complexes on DNA is restricted by nucleosomes. Here, we show that the role of cohesin in chromosome organization requires the histone chaperone FACT ('facilitates chromatin transcription') in Saccharomyces cerevisiae. We find that FACT interacts directly with cohesin, and is dynamically required for its localization on chromatin. Depletion of FACT in metaphase cells prevents cohesin accumulation at pericentric regions and causes reduced binding on chromosome arms. Using the Hi-C technique, we show that cohesin-dependent TAD (topological associated domain)-like structures in G1 and metaphase chromosomes are reduced in the absence of FACT. Sister chromatid cohesion is intact in FACT-depleted cells, although chromosome segregation failure is observed. Our data show that FACT contributes to the formation of cohesin-dependent TADs, thus uncovering a new role for this complex in nuclear organization during interphase and mitotic chromosome folding.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Elongación Transcripcional/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Mapas de Interacción de Proteínas , Saccharomyces cerevisiae/citología , Cohesinas
6.
Bioinformatics ; 35(13): 2185-2192, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30496344

RESUMEN

MOTIVATION: The Burrows-Wheeler transform (BWT) is widely used for the fast alignment of high-throughput sequence data. This method also has potential applications in other areas of bioinformatics, and it can be specially useful for the fast searching of patterns on coverage data from different sources. RESULTS: We present a nucleosome pattern search method that converts levels of nucleosomal occupancy to a sequence-like format to which BWT searches can be applied. The method is embedded in a nucleosome map browser, 'Nucleosee', an interactive visual tool specifically designed to enhance BWT searches, giving them context and making them suitable for visual discourse analysis of the results. The proposed method is fast, flexible and sufficiently generic for the exploration of data in a broad and interactive way. AVAILABILITY AND IMPLEMENTATION: The proposed algorithm and visual browser are available for testing at http://cpg3.der.usal.es/nucleosee. The source code and installation packages are also available at https://github.com/rodrigoSantamaria/nucleosee. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genoma , Nucleosomas , Algoritmos , Programas Informáticos
7.
Methods Mol Biol ; 1766: 3-13, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29605844

RESUMEN

The discovery of CpG islands (CGIs) and the study of their structure and properties run parallel to the development of molecular biology in the last two decades of the twentieth century and to the development of high-throughput genomic technologies at the turn of the millennium. First identified as discrete G + C-rich regions of unmethylated DNA in several vertebrates, CGIs were soon found to display additional distinctive chromatin features from the rest of the genome in terms of accessibility and of the epigenetic modifications of their histones. These features, together with their colocalization with promoters and with origins of DNA replication in mammals, highlighted their relevance in the regulation of genomic processes. Recent approaches have shown with unprecedented detail the dynamics and diversity of the epigenetic landscape of CGIs during normal development and under pathological conditions. Also, comparative analyses across species have started revealing how CGIs evolve and contribute to the evolution of the vertebrate genome.


Asunto(s)
Islas de CpG/genética , Metilación de ADN , ADN/metabolismo , Epigénesis Genética , Animales , Cromatina/química , Cromatina/metabolismo , ADN/química , Replicación del ADN , Histonas/química , Histonas/metabolismo , Humanos , Regiones Promotoras Genéticas/genética , Transcripción Genética
8.
Cold Spring Harb Protoc ; 2018(3)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28733396

RESUMEN

Two-dimensional gel electrophoresis allows direct detection of DNA replication and recombination intermediates in preparations of total genomic DNA. This technique is widely used to identify replication origins in the yeast genome and is based on the different mobility in agarose gels of linear and branched DNA molecules depending on their mass and structure. During the first dimension, low-voltage and a low-percentage agarose gel favors separation of the molecules by their mass and minimizes the effect of their structure. In contrast, during the second dimension, a higher voltage, a higher percentage agarose gel, and the presence of ethidium bromide significantly delays the migration of branched structures relative to linear molecules of the same mass. This technique is appropriate for the detection of replication initiation and, therefore, an active origin of replication, within regions of approximately 2.5-5.5 kb. Consequently, it is not well suited for genome-wide replication analyses.


Asunto(s)
Replicación del ADN , Electroforesis en Gel Bidimensional/métodos , Schizosaccharomyces/genética , ADN de Hongos/aislamiento & purificación
9.
Cold Spring Harb Protoc ; 2018(4)2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-28733402

RESUMEN

The fission yeast Schizosaccharomyces pombe is an excellent model organism to study DNA metabolism, in which the DNA replication and repair mechanisms are evolutionarily conserved. In this introduction we describe a range of methods commonly used to study aspects of DNA metabolism in fission yeast, focusing on approaches used for the analysis of genome stability, DNA replication, and DNA repair. We describe the use of a minichromosome, Ch16, for monitoring different aspects of genome stability. We introduce two-dimensional gel electrophoresis and immunofluorescent visualization of combed DNA molecules for the analysis of DNA replication. Further, we introduce a pulsed field gel electrophoresis (PFGE) assay to physically monitor chromosome integrity, which can be used in conjunction with a DNA double-strand break (DSB) repair assay to genetically quantitate different DSB repair and misrepair outcomes, including gross chromosomal rearrangements, in fission yeast.


Asunto(s)
Bioquímica/métodos , ADN de Hongos/metabolismo , Schizosaccharomyces/metabolismo , Reparación del ADN , Replicación del ADN , Inestabilidad Genómica , Schizosaccharomyces/genética
10.
11.
Nucleus ; 8(5): 469-474, 2017 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-28635365

RESUMEN

Nucleosomes are the basic units of chromatin. They compact the genome inside the nucleus and regulate the access of proteins to DNA. In the yeast genome, most nucleosomes occupy well-defined positions, which are maintained under many different physiological situations and genetic backgrounds. Although several short sequence elements have been described that favor or reduce the affinity between histones and DNA, the extent to which the DNA sequence affects nucleosome positioning in the genomic context remains unclear. Recent analyses indicate that the base composition pattern of mononucleosomal DNA differs among species, and that the same sequence elements have a different impact on nucleosome positioning in different genomes despite the high level of phylogenetic conservation of histones. These studies have also shown that the DNA sequence contributes to nucleosome positioning to the point that it is possible to design synthetic DNA molecules capable of generating regular and species-specific nucleosomal patterns in vivo.


Asunto(s)
ADN/química , Nucleosomas/metabolismo , Composición de Base , ADN/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Schizosaccharomyces/citología , Schizosaccharomyces/genética
12.
Curr Genet ; 63(2): 187-193, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27558480

RESUMEN

The occupancy of nucleosomes governs access to the eukaryotic genomes and results from a combination of biophysical features and the effect of ATP-dependent remodelling complexes. Most promoter regions show a conserved pattern characterized by a nucleosome-depleted region (NDR) flanked by nucleosomal arrays. The conserved RSC remodeler was reported to be critical to establish NDR in vivo in budding yeast but other evidences suggested that this activity may not be conserved in fission yeast. By reanalysing and expanding previously published data, we propose that NDR formation requires, at least partially, RSC in both yeast species. We also discuss the most prominent biological role of RSC and the possibility that non-essential subunits do not define alternate versions of the complex.


Asunto(s)
Adenosina Trifosfatasas/genética , Ensamble y Desensamble de Cromatina/genética , Nucleosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/genética , Adenosina Trifosfatasas/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Especificidad de la Especie
13.
Genome Res ; 26(11): 1532-1543, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27662899

RESUMEN

In the yeast genome, a large proportion of nucleosomes occupy well-defined and stable positions. While the contribution of chromatin remodelers and DNA binding proteins to maintain this organization is well established, the relevance of the DNA sequence to nucleosome positioning in the genome remains controversial. Through quantitative analysis of nucleosome positioning, we show that sequence changes distort the nucleosomal pattern at the level of individual nucleosomes in three species of Schizosaccharomyces and in Saccharomyces cerevisiae This effect is equally detected in transcribed and nontranscribed regions, suggesting the existence of sequence elements that contribute to positioning. To identify such elements, we incorporated information from nucleosomal signatures into artificial synthetic DNA molecules and found that they generated regular nucleosomal arrays indistinguishable from those of endogenous sequences. Strikingly, this information is species-specific and can be combined with coding information through the use of synonymous codons such that genes from one species can be engineered to adopt the nucleosomal organization of another. These findings open the possibility of designing coding and noncoding DNA molecules capable of directing their own nucleosomal organization.


Asunto(s)
Genoma Fúngico , Nucleosomas/genética , Sistemas de Lectura Abierta , Secuencias Reguladoras de Ácidos Nucleicos , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética
14.
Elife ; 52016 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-27171419

RESUMEN

In fission yeast, the ste11 gene encodes the master regulator initiating the switch from vegetative growth to gametogenesis. In a previous paper, we showed that the methylation of H3K4 and consequent promoter nucleosome deacetylation repress ste11 induction and cell differentiation (Materne et al., 2015) but the regulatory steps remain poorly understood. Here we report a genetic screen that highlighted H2B deubiquitylation and the RSC remodeling complex as activators of ste11 expression. Mechanistic analyses revealed more complex, opposite roles of H2Bubi at the promoter where it represses expression, and over the transcribed region where it sustains it. By promoting H3K4 methylation at the promoter, H2Bubi initiates the deacetylation process, which decreases chromatin remodeling by RSC. Upon induction, this process is reversed and efficient NDR (nucleosome depleted region) formation leads to high expression. Therefore, H2Bubi represses gametogenesis by opposing the recruitment of RSC at the promoter of the master regulator ste11 gene.


Asunto(s)
Ensamble y Desensamble de Cromatina , Regulación Fúngica de la Expresión Génica , Histonas/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Factores de Transcripción/antagonistas & inhibidores , Ubiquitinación
15.
Bioessays ; 37(10): 1067-73, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26293347

RESUMEN

The dynamics of eukaryotic DNA polymerases has been difficult to establish because of the difficulty of tracking them along the chromosomes during DNA replication. Recent work has addressed this problem in the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae through the engineering of replicative polymerases to render them prone to incorporating ribonucleotides at high rates. Their use as tracers of the passage of each polymerase has provided a picture of unprecedented resolution of the organization of replicons and replication origins in the two yeasts and has uncovered important differences between them. Additional studies have found an overlapping distribution of DNA polymorphisms and the junctions of Okazaki fragments along mononucleosomal DNA. This sequence instability is caused by the premature release of polymerase δ and the retention of non proof-read DNA tracts replicated by polymerase α. The possible implementation of these new experimental approaches in multicellular organisms opens the door to the analysis of replication dynamics under a broad range of genetic backgrounds and physiological or pathological conditions.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Saccharomycetales/genética , Schizosaccharomyces/genética , ADN , ADN de Hongos/metabolismo , ADN Polimerasa Dirigida por ADN/análisis , Genoma Fúngico , Inestabilidad Genómica , Origen de Réplica , Saccharomyces cerevisiae/genética
16.
Elife ; 4: e09008, 2015 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-26098123

RESUMEN

The phosphorylation of the RNA polymerase II C-terminal domain (CTD) plays a key role in delineating transcribed regions within chromatin by recruiting histone methylases and deacetylases. Using genome-wide nucleosome mapping, we show that CTD S2 phosphorylation controls nucleosome dynamics in the promoter of a subset of 324 genes, including the regulators of cell differentiation ste11 and metabolic adaptation inv1. Mechanistic studies on these genes indicate that during gene activation a local increase of phospho-S2 CTD nearby the promoter impairs the phospho-S5 CTD-dependent recruitment of Set1 and the subsequent recruitment of specific HDACs, which leads to nucleosome depletion and efficient transcription. The early increase of phospho-S2 results from the phosphorylation of the CTD S2 kinase Lsk1 by MAP kinase in response to cellular signalling. The artificial tethering of the Lsk1 kinase at the ste11 promoter is sufficient to activate transcription. Therefore, signalling through the CTD code regulates promoter nucleosomes dynamics.


Asunto(s)
Nucleosomas/metabolismo , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Datos de Secuencia Molecular , Fosforilación , Regiones Promotoras Genéticas , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Análisis de Secuencia de ADN , Transducción de Señal , Transcripción Genética , Activación Transcripcional
17.
Open Biol ; 5(4): 140218, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25854683

RESUMEN

Nucleosomes are the basic structural units of chromatin. Most of the yeast genome is organized in a pattern of positioned nucleosomes that is stably maintained under a wide range of physiological conditions. In this work, we have searched for sequence determinants associated with positioned nucleosomes in four species of fission and budding yeasts. We show that mononucleosomal DNA follows a highly structured base composition pattern, which differs among species despite the high degree of histone conservation. These nucleosomal signatures are present in transcribed and non-transcribed regions across the genome. In the case of open reading frames, they correctly predict the relative distribution of codons on mononucleosomal DNA, and they also determine a periodicity in the average distribution of amino acids along the proteins. These results establish a direct and species-specific connection between the position of each codon around the histone octamer and protein composition.


Asunto(s)
Aminoácidos/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Nucleosomas/genética , Transcriptoma , Aminoácidos/metabolismo , ADN de Hongos/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico/genética , Nucleosomas/metabolismo , Sistemas de Lectura Abierta/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/clasificación , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Especificidad de la Especie
18.
Brief Bioinform ; 16(4): 576-87, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25296770

RESUMEN

Nucleosomes contribute to compacting the genome into the nucleus and regulate the physical access of regulatory proteins to DNA either directly or through the epigenetic modifications of the histone tails. Precise mapping of nucleosome positioning across the genome is, therefore, essential to understanding the genome regulation. In recent years, several experimental protocols have been developed for this purpose that include the enzymatic digestion, chemical cleavage or immunoprecipitation of chromatin followed by next-generation sequencing of the resulting DNA fragments. Here, we compare the performance and resolution of these methods from the initial biochemical steps through the alignment of the millions of short-sequence reads to a reference genome to the final computational analysis to generate genome-wide maps of nucleosome occupancy. Because of the lack of a unified protocol to process data sets obtained through the different approaches, we have developed a new computational tool (NUCwave), which facilitates their analysis, comparison and assessment and will enable researchers to choose the most suitable method for any particular purpose. NUCwave is freely available at http://nucleosome.usal.es/nucwave along with a step-by-step protocol for its use.


Asunto(s)
Estudio de Asociación del Genoma Completo , Nucleosomas/genética , Inmunoprecipitación de Cromatina , Humanos , Alineación de Secuencia
19.
Cell ; 159(3): 572-83, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25417108

RESUMEN

Nuclear RNAi is an important regulator of transcription and epigenetic modification, but the underlying mechanisms remain elusive. Using a genome-wide approach in the fission yeast S. pombe, we have found that Dcr1, but not other components of the canonical RNAi pathway, promotes the release of Pol II from the 3? end of highly transcribed genes, and, surprisingly, from antisense transcription of rRNA and tRNA genes, which are normally transcribed by Pol I and Pol III. These Dcr1-terminated loci correspond to sites of replication stress and DNA damage, likely resulting from transcription-replication collisions. At the rDNA loci, release of Pol II facilitates DNA replication and prevents homologous recombination, which would otherwise lead to loss of rDNA repeats especially during meiosis. Our results reveal a novel role for Dcr1-mediated transcription termination in genome maintenance and may account for widespread regulation of genome stability by nuclear RNAi in higher eukaryotes.


Asunto(s)
Replicación del ADN , Endorribonucleasas/metabolismo , Inestabilidad Genómica , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Terminación de la Transcripción Genética , ADN sin Sentido/genética , ADN sin Sentido/metabolismo , Interferencia de ARN , ARN Polimerasa II/metabolismo , Schizosaccharomyces/enzimología , Transcripción Genética
20.
Biochim Biophys Acta ; 1843(12): 2886-99, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25193362

RESUMEN

PTPN13 is a high-molecular weight intracellular phosphatase with several isoforms that exhibits a highly modular structure. Although in recent years different roles have been described for PTPN13, we are still far from understanding its function in cell biology. Here we show that PTPN13 expression is activated during megakaryocytic differentiation at the protein and mRNA level. Our results show that the upregulation of PTPN13 inhibits megakaryocytic differentiation, while PTPN13 silencing triggers differentiation. The ability of PTPN13 to alter megakaryocytic differentiation can be explained by its capacity to regulate ERK and STAT signalling. Interestingly, the silencing of ß-catenin produced the same effect as PTPN13 downregulation. We demonstrate that both proteins coimmunoprecipitate and colocalise. Moreover, we provide evidence showing that PTPN13 can regulate ß-catenin phosphorylation, stability and transcriptional activity. Therefore, the ability of PTPN13 to control megakaryocytic differentiation must be intimately linked to the regulation of ß-catenin function. Moreover, our results show for the first time that PTPN13 is stabilised upon Wnt signalling, which makes PTPN13 an important player in canonical Wnt signalling. Our results show that PTPN13 behaves as an important regulator of megakaryocytic differentiation in cell lines and also in murine haematopoietic progenitors. This importance can be explained by the ability of PTPN13 to regulate cellular signalling, and especially through the regulation of ß-catenin stability and function. Our results hold true for different megakaryocytic cell lines and also for haematopoietic progenitors, suggesting that these two proteins may play a relevant role during in vivo megakaryopoiesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA