Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39229026

RESUMEN

Chromatin-sensitive Partial Wave Spectroscopic (csPWS) microscopy offers a non-invasive glimpse into the mass density distribution of cellular structures at the nanoscale, leveraging the spectroscopic information. Such capability allows us to analyze the chromatin structure and organization and the global transcriptional state of the cell nuclei for the study of its role in carcinogenesis. Accurate segmentation of the nuclei in csPWS microscopy images is an essential step in isolating them for further analysis. However, manual segmentation is error-prone, biased, time-consuming, and laborious, resulting in disrupted nuclear boundaries with partial or over-segmentation. Here, we present an innovative deep-learning-driven approach to automate the accurate nuclei segmentation of label-free live cell csPWS microscopy imaging data. Our approach, csPWS-seg, harnesses the Convolutional Neural Networks-based U-Net model with an attention mechanism to automate the accurate cell nuclei segmentation of csPWS microscopy images. We leveraged the structural, physical, and biological differences between the cytoplasm, nucleus, and nuclear periphery to construct three distinct csPWS feature images for nucleus segmentation. Using these images of HCT116 cells, csPWS-seg achieved superior performance with a median Intersection over Union (IoU) of 0.80 and a Dice Similarity Coefficient (DSC) score of 0.88. The csPWS-seg overcame the segmentation performance over the baseline U-Net model and another attention-based model, SE-U-Net, marking a significant improvement in segmentation accuracy. Further, we analyzed the performance of our proposed model with four loss functions: binary cross-entropy loss, focal loss, dice loss, and Jaccard loss. The csPWS-seg with focal loss provided the best results compared to other loss functions. The automatic and accurate nuclei segmentation offered by the csPWS-seg not only automates, accelerates, and streamlines csPWS data analysis but also enhances the reliability of subsequent chromatin analysis research, paving the way for more accurate diagnostics, treatment, and understanding of cellular mechanisms for carcinogenesis.

2.
Nat Commun ; 14(1): 812, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781861

RESUMEN

Unlike PIWI-interacting RNA (piRNA) in other species that mostly target transposable elements (TEs), >80% of piRNAs in adult mammalian testes lack obvious targets. However, mammalian piRNA sequences and piRNA-producing loci evolve more rapidly than the rest of the genome for unknown reasons. Here, through comparative studies of chickens, ducks, mice, and humans, as well as long-read nanopore sequencing on diverse chicken breeds, we find that piRNA loci across amniotes experience: (1) a high local mutation rate of structural variations (SVs, mutations ≥ 50 bp in size); (2) positive selection to suppress young and actively mobilizing TEs commencing at the pachytene stage of meiosis during germ cell development; and (3) negative selection to purge deleterious SV hotspots. Our results indicate that genetic instability at pachytene piRNA loci, while producing certain pathogenic SVs, also protects genome integrity against TE mobilization by driving the formation of rapid-evolving piRNA sequences.


Asunto(s)
Pollos , Células Germinativas , Humanos , Masculino , Animales , Ratones , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Pollos/genética , Pollos/metabolismo , Células Germinativas/metabolismo , Testículo/metabolismo , Elementos Transponibles de ADN/genética , ARN de Interacción con Piwi , Mamíferos/genética
4.
AMIA Annu Symp Proc ; 2022: 522-531, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37128463

RESUMEN

We present our open-source pipeline for quickly enhancing open data sets with research-focused expansions and show its effectiveness on a cornerstone open data set released by the Cook County government in Illinois. The City of Chicago and Cook County were both early adopters of open data portals and have made a wide variety of data available to the public; we focus on the medical examiner case archive which provides information about deaths recorded by Cook County's Office of the Medical Examiner, including overdoses invaluable to substance use disorder research. Our pipeline derives key variables from open data and links to other publicly available data sets in support of accelerating translational research on substance use disorders. Our methods apply to location-based analyses of overdoses in general and, as an example, we highlight their impact on opioid research. We provide our pipeline as open-source software to act as open infrastructure for open data to help fill the gap between data release and data use.


Asunto(s)
Sobredosis de Droga , Trastornos Relacionados con Sustancias , Humanos , Analgésicos Opioides , Illinois
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA