Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 42(25): 5021-5033, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35606144

RESUMEN

Oxytocin (Oxt) neurons regulate diverse physiological responses via direct connections with different neural circuits. However, the lack of comprehensive input-output wiring diagrams of Oxt neurons and their quantitative relationship with Oxt receptor (Oxtr) expression presents challenges to understanding circuit-specific Oxt functions. Here, we establish a whole-brain distribution and anatomic connectivity map of Oxt neurons, and their relationship with Oxtr expression using high-resolution 3D mapping methods in adult male and female mice. We use a flatmap to describe Oxt neuronal expression in four hypothalamic domains including under-characterized Oxt neurons in the tuberal nucleus (TU). Oxt neurons in the paraventricular hypothalamus (PVH) broadly project to nine functional circuits that control cognition, brain state, and somatic visceral response. In contrast, Oxt neurons in the supraoptic (SO) and accessory (AN) nuclei have limited central projection to a small subset of the nine circuits. Surprisingly, quantitative comparison between Oxt output and Oxtr expression showed no significant correlation across the whole brain, suggesting abundant indirect Oxt signaling in Oxtr-expressing areas. Unlike output, Oxt neurons in both the PVH and SO receive similar monosynaptic inputs from a subset of the nine circuits mainly in the thalamic, hypothalamic, and cerebral nuclei areas. Our results suggest that PVH-Oxt neurons serve as a central modulator to integrate external and internal information via largely reciprocal connection with the nine circuits while the SO-Oxt neurons act mainly as unidirectional Oxt hormonal output. In summary, our Oxt wiring diagram provides anatomic insights about distinct behavioral functions of Oxt signaling in the brain.SIGNIFICANCE STATEMENT Oxytocin (Oxt) neurons regulate diverse physiological functions from prosocial behavior to pain sensation via central projection in the brain. Thus, understanding detailed anatomic connectivity of Oxt neurons can provide insight on circuit-specific roles of Oxt signaling in regulating different physiological functions. Here, we use high-resolution mapping methods to describe the 3D distribution, monosynaptic input and long-range output of Oxt neurons, and their relationship with Oxt receptor (Oxtr) expression across the entire mouse brain. We found Oxt connections with nine functional circuits controlling cognition, brain state, and somatic visceral response. Furthermore, we identified a quantitatively unmatched Oxt-Oxtr relationship, suggesting broad indirect Oxt signaling. Together, our comprehensive Oxt wiring diagram advances our understanding of circuit-specific roles of Oxt neurons.


Asunto(s)
Oxitocina , Receptores de Oxitocina , Animales , Encéfalo/metabolismo , Femenino , Masculino , Ratones , Neuronas/metabolismo , Oxitocina/metabolismo , Receptores de Oxitocina/metabolismo , Transducción de Señal
2.
Elife ; 92020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32216876

RESUMEN

Assessing the imminence of threatening events using environmental cues enables proactive engagement of appropriate avoidance responses. The neural processes employed to anticipate event occurrence depend upon which cue properties are used to formulate predictions. In serial compound stimulus (SCS) conditioning in mice, repeated presentations of sequential tone (CS1) and white noise (CS2) auditory stimuli immediately prior to an aversive event (US) produces freezing and flight responses to CS1 and CS2, respectively (Fadok et al., 2017). Recent work reported that these responses reflect learned temporal relationships of CS1 and CS2 to the US (Dong et al., 2019). However, we find that frequency and sound pressure levels, not temporal proximity to the US, are the key factors underlying SCS-driven conditioned responses. Moreover, white noise elicits greater physiological and behavioral responses than tones even prior to conditioning. Thus, stimulus salience is the primary determinant of behavior in the SCS paradigm, and represents a potential confound in experiments utilizing multiple sensory stimuli.


If you notice the skies above you becoming darker, your first thought might be to seek shelter. Experience will have taught you that darkening skies are often a sign of an approaching storm. Learning to recognise changes that occur prior to an unpleasant event can help us avoid danger. But this is not the only strategy people can use to predict when something bad is about to happen. Another option is to use the intensity, or salience, of sensory information. Soldiers fighting on the front line, for example, might rely on the loudness of enemy voices or vehicles to judge how close an advancing enemy is. This information will help them decide when to retreat. Different brain processes are active when individuals use each of these two strategies to predict when an upcoming event will occur. One approach to study these processes is to use a technique called "SCS conditioning". This involves exposing mice to two sounds, followed by a mild electric shock administered to the feet. The first sound is a pure tone; the second is a burst of white noise. After repeated trials, mice begin to show distinct responses to the two sounds. They freeze in response to the tone but run away upon hearing the white noise. These responses parallel behaviors seen in the wild. When mice detect a distant predator, they freeze to avoid detection. But if the predator comes too close for the mice to avoid being spotted, they instead try to flee. Some have argued that in the SCS task, mice learn that the white noise predicts an imminent shock. The mice therefore flee as soon as they hear it. By contrast, they learn that the tone predicts a delayed shock and therefore choose to freeze instead. However, by tweaking the SCS procedure, Hersman et al. now show that even if the white noise occurs before the tone, it is still more likely than the tone to trigger an escape response. In fact, mice are more reactive to white noise than tones even if the sounds are never paired with shocks. This suggests that mice find white noise naturally more noticeable than tones. Moreover, Hersman et al. show that tones can also trigger escape responses if they are sufficiently intense. Together these results suggest that mice use the intensity of the stimuli ­ rather than the length of time between each stimulus and the shock ­ to decide whether to freeze or flee. People with anxiety disorders often show exaggerated responses to things that do not pose a genuine threat. At present the pathways in the brain that are responsible for these excessive reactions are unclear. The results of Hersman et al. will aid research into the brain circuits that detect, assess and respond to threats. Understanding these circuits could in the future lead to better treatments for anxiety disorders.


Asunto(s)
Estimulación Acústica , Reacción de Prevención , Condicionamiento Clásico/fisiología , Animales , Señales (Psicología) , Miedo , Masculino , Ratones , Ratones Endogámicos C57BL , Ruido
3.
Elife ; 32014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25535838

RESUMEN

Individuals with neurofibromatosis type 1 (NF1) frequently exhibit cognitive and motor impairments and characteristics of autism. The cerebellum plays a critical role in motor control, cognition, and social interaction, suggesting that cerebellar defects likely contribute to NF1-associated neurodevelopmental disorders. Here we show that Nf1 inactivation during early, but not late stages of cerebellar development, disrupts neuronal lamination, which is partially caused by overproduction of glia and subsequent disruption of the Bergmann glia (BG) scaffold. Specific Nf1 inactivation in glutamatergic neuronal precursors causes premature differentiation of granule cell (GC) precursors and ectopic production of unipolar brush cells (UBCs), indirectly disrupting neuronal migration. Transient MEK inhibition during a neonatal window prevents cerebellar developmental defects and improves long-term motor performance of Nf1-deficient mice. This study reveals essential roles of Nf1 in GC/UBC migration by generating correct numbers of glia and controlling GC/UBC fate-specification/differentiation, identifying a therapeutic prevention strategy for multiple NF1-associcated developmental abnormalities.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Neurofibromatosis/fisiopatología , Alelos , Animales , Astrocitos/patología , Proliferación Celular , Cerebelo/enzimología , Cerebelo/patología , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Silenciador del Gen , Genes de Neurofibromatosis 1 , Aprendizaje , Ratones , Neurofibromatosis/enzimología , Neurofibromatosis/genética , Neuronas/patología , Desempeño Psicomotor
4.
Nat Neurosci ; 17(9): 1240-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25064852

RESUMEN

Feeding can be inhibited by multiple cues, including those associated with satiety, sickness or unpalatable food. How such anorexigenic signals inhibit feeding at the neural circuit level is not completely understood. Although some inhibitory circuits have been identified, it is not yet clear whether distinct anorexigenic influences are processed in a convergent or parallel manner. The amygdala central nucleus (CEA) has been implicated in feeding control, but its role is controversial. The lateral subdivision of CEA (CEl) contains a subpopulation of GABAergic neurons that are marked by protein kinase C-δ (PKC-δ). We found that CEl PKC-δ(+) neurons in mice were activated by diverse anorexigenic signals in vivo, were required for the inhibition of feeding by such signals and strongly suppressed food intake when activated. They received presynaptic inputs from anatomically distributed neurons activated by different anorexigenic agents. Our data suggest that CEl PKC-δ(+) neurons constitute an important node that mediates the influence of multiple anorexigenic signals.


Asunto(s)
Anorexia/metabolismo , Núcleo Amigdalino Central/fisiología , Neuronas GABAérgicas/fisiología , Proteína Quinasa C-delta/metabolismo , Transducción de Señal/fisiología , Potenciales de Acción/fisiología , Animales , Ansiedad/metabolismo , Conducta Alimentaria/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Inhibición Neural/fisiología , Optogenética , Terminales Presinápticos/metabolismo , Respuesta de Saciedad/fisiología
5.
Nature ; 509(7502): 627-32, 2014 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-24739975

RESUMEN

Social behaviours, such as aggression or mating, proceed through a series of appetitive and consummatory phases that are associated with increasing levels of arousal. How such escalation is encoded in the brain, and linked to behavioural action selection, remains an unsolved problem in neuroscience. The ventrolateral subdivision of the murine ventromedial hypothalamus (VMHvl) contains neurons whose activity increases during male-male and male-female social encounters. Non-cell-type-specific optogenetic activation of this region elicited attack behaviour, but not mounting. We have identified a subset of VMHvl neurons marked by the oestrogen receptor 1 (Esr1), and investigated their role in male social behaviour. Optogenetic manipulations indicated that Esr1(+) (but not Esr1(-)) neurons are sufficient to initiate attack, and that their activity is continuously required during ongoing agonistic behaviour. Surprisingly, weaker optogenetic activation of these neurons promoted mounting behaviour, rather than attack, towards both males and females, as well as sniffing and close investigation. Increasing photostimulation intensity could promote a transition from close investigation and mounting to attack, within a single social encounter. Importantly, time-resolved optogenetic inhibition experiments revealed requirements for Esr1(+) neurons in both the appetitive (investigative) and the consummatory phases of social interactions. Combined optogenetic activation and calcium imaging experiments in vitro, as well as c-Fos analysis in vivo, indicated that increasing photostimulation intensity increases both the number of active neurons and the average level of activity per neuron. These data suggest that Esr1(+) neurons in VMHvl control the progression of a social encounter from its appetitive through its consummatory phases, in a scalable manner that reflects the number or type of active neurons in the population.


Asunto(s)
Agresión/fisiología , Receptor alfa de Estrógeno/metabolismo , Neuronas/metabolismo , Conducta Sexual Animal/fisiología , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/fisiología , Animales , Femenino , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones , Optogenética
6.
Cell ; 156(3): 522-36, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24485458

RESUMEN

The extended amygdala has dominated research on the neural circuitry of fear and anxiety, but the septohippocampal axis also plays an important role. The lateral septum (LS) is thought to suppress fear and anxiety through its outputs to the hypothalamus. However, this structure has not yet been dissected using modern tools. The type 2 CRF receptor (Crfr2) marks a subset of LS neurons whose functional connectivity we have investigated using optogenetics. Crfr2(+) cells include GABAergic projection neurons that connect with the anterior hypothalamus. Surprisingly, we find that these LS outputs enhance stress-induced behavioral measures of anxiety. Furthermore, transient activation of Crfr2(+) neurons promotes, while inhibition suppresses, persistent anxious behaviors. LS Crfr2(+) outputs also positively regulate circulating corticosteroid levels. These data identify a subset of LS projection neurons that promote, rather than suppress, stress-induced behavioral and endocrinological dimensions of persistent anxiety states and provide a cellular point of entry to LS circuitry.


Asunto(s)
Ansiedad/fisiopatología , Hipotálamo/metabolismo , Tabique del Cerebro/fisiología , Corticoesteroides/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Conducta Animal , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/fisiología , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Estrés Fisiológico
7.
Neural Dev ; 3: 30, 2008 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-18986511

RESUMEN

BACKGROUND: Radial glia comprise a molecularly defined neural progenitor population but their role in neurogenesis has remained contested due to the lack of a single universally accepted genetic tool for tracing their progeny and the inability to distinguish functionally distinct developmental stages. RESULTS: By direct comparisons of Cre/loxP lineage tracing results obtained using three different radial glial promoters (Blbp, Glast, and hGFAP), we show that most neurons in the brain are derived from radial glia. Further, we show that hGFAP promoter induction occurs in ventral telencephalic radial glia only after they have largely completed neurogenesis. CONCLUSION: These data establish the major neurogenic role of radial glia in the developing central nervous system and genetically distinguish an early neurogenic Blbp+Glast+hGFAP- stage from a later gliogenic Blbp+Glast+hGFAP+ stage in the ventral telencephalon.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Neurogénesis/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Telencéfalo/crecimiento & desarrollo , Animales , Linaje de la Célula/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo , Proteína de Unión a los Ácidos Grasos 7 , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteína Ácida Fibrilar de la Glía , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/citología , Neuronas/citología , Telencéfalo/anatomía & histología
8.
J Comp Neurol ; 500(2): 368-83, 2007 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-17111379

RESUMEN

Folate supplementation prevents up to 70% of human neural tube defects (NTDs), although the precise cellular and metabolic sites of action remain undefined. One possibility is that folate modulates the function of metabolic enzymes expressed in cellular populations involved in neural tube closure. Here we show that the folate metabolic enzyme ALDH1L1 is cell-specifically expressed in PAX3-negative radial glia at the midline of the neural tube during early murine embryogenesis. Midline restriction is not a general property of this branch of folate metabolism, as MTHFD1 displays broad and apparently ubiquitous expression throughout the neural tube. Consistent with previous work showing antiproliferative effects in vitro, ALDH1L1 upregulation during central nervous system (CNS) development correlates with reduced proliferation and most midline ALDH1L1(+) cells are quiescent. These data provide the first evidence for localized differences in folate metabolism within the early neural tube and suggest that folate might modulate proliferation via effects on midline Aldh1l1(+) cells. To begin addressing its role in neurulation, we analyzed a microdeletion mouse strain lacking Aldh1l1 and observed neither increased failure of neural tube closure nor detectable proliferation defects. Although these results indicate that loss-of-function Aldh1l1 mutations do not impair these processes in mice, the specific midline expression of ALDH1L1 and its ability to dominantly suppress proliferation in a folate responsive manner may suggest that mutations contributing to disease are gain-of-function, rather than loss-of-function. Moreover, a role for loss-of-function mutations in human NTDs remains possible, as Mthfr null mice do not develop NTDs even though MTHFR mutations increase human NTD risk.


Asunto(s)
Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Sistema Nervioso Central/anomalías , Sistema Nervioso Central/enzimología , Ácido Fólico/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Defectos del Tubo Neural/enzimología , Familia de Aldehído Deshidrogenasa 1 , Animales , Diferenciación Celular/genética , Proliferación Celular , Sistema Nervioso Central/fisiopatología , Modelos Animales de Enfermedad , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación/genética , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/fisiopatología , Neuroglía/citología , Neuroglía/enzimología , Neuronas/citología , Neuronas/enzimología , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Retinal-Deshidrogenasa , Células Madre/citología , Células Madre/enzimología , Regulación hacia Arriba/fisiología
9.
Cell ; 121(3): 322-3, 2005 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-15882615

RESUMEN

Generation of somatic mosaics in which mutant cell clones are uniquely and completely labeled has yielded considerable insight into many biological processes in Drosophila. In this issue of Cell, describe a novel method called MADM that allows the generation of such mosaics in mice.


Asunto(s)
Integrasas/genética , Mosaicismo , Recombinación Genética/genética , Animales , Linaje de la Célula/genética , Drosophila/genética , Marcadores Genéticos , Técnicas Genéticas , Proteínas Fluorescentes Verdes/genética , Proteínas Luminiscentes/genética , Ratones , Mitosis/genética , Mutagénesis Insercional/genética , Mutagénesis Insercional/métodos , Mutación/genética , Proteína Fluorescente Roja
10.
Genes Dev ; 19(9): 1028-33, 2005 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15879553

RESUMEN

Radial glia function during CNS development both as neural progenitors and as a scaffolding supporting neuronal migration. To elucidate pathways involved in these functions, we mapped in vivo the promoter for Blbp, a radial glial gene. We show here that a binding site for the Notch effector CBF1 is essential for all Blbp transcription in radial glia, and that BLBP expression is significantly reduced in the forebrains of mice lacking the Notch1 and Notch3 receptors. These results identify Blbp as the first predominantly CNS-specific Notch target gene and suggest that it mediates some aspects of Notch signaling in radial glia.


Asunto(s)
Proteínas Portadoras/metabolismo , Sistema Nervioso Central/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Transducción de Señal/fisiología , Animales , Secuencia de Bases , Sitios de Unión , Proteínas Portadoras/genética , Sistema Nervioso Central/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteína de Unión a los Ácidos Grasos 7 , Proteínas de Unión a Ácidos Grasos , Técnica del Anticuerpo Fluorescente , Galactósidos , Histocitoquímica , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas , Indoles , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/genética , Receptores Notch
11.
Neuron ; 41(6): 881-90, 2004 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-15046721

RESUMEN

Radial glial cells function during CNS development as neural progenitors, although their precise contribution to neurogenesis remains controversial. Recent work has argued that regional differences may exist regarding the neurogenic potential of radial glia. Here, we show that the vast majority of neurons in all brain regions derive from radial glia. Cre/loxP fate mapping and clonal analysis demonstrate that radial glia throughout the CNS serve as neuronal progenitors and that radial glia within different regions of the CNS pass through their neurogenic stage of development at distinct time points. Thus, radial glial populations within different CNS regions are not heterogeneous with regard to their potential to generate neurons versus glia.


Asunto(s)
Proteínas Portadoras/metabolismo , Diferenciación Celular/genética , Sistema Nervioso Central/embriología , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Células Madre/metabolismo , Región de Flanqueo 5'/genética , Animales , Biomarcadores , Tipificación del Cuerpo/genética , Proteínas Portadoras/genética , Linaje de la Célula/genética , Movimiento Celular/genética , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Células Clonales/citología , Células Clonales/metabolismo , Proteína de Unión a los Ácidos Grasos 7 , Proteínas de Unión a Ácidos Grasos , Feto , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Neuroglía/citología , Neuronas/citología , Recombinación Genética/genética , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...