Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aging Cell ; 23(4): e14104, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38454639

RESUMEN

Unlike chronological age, biological age is a strong indicator of health of an individual. However, the molecular fingerprint associated with biological age is ill-defined. To define a high-resolution signature of biological age, we analyzed metabolome, circulating senescence-associated secretome (SASP)/inflammation markers and the interaction between them, from a cohort of healthy and rapid agers. The balance between two fatty acid oxidation mechanisms, ß-oxidation and ω-oxidation, associated with the extent of functional aging. Furthermore, a panel of 25 metabolites, Healthy Aging Metabolic (HAM) index, predicted healthy agers regardless of gender and race. HAM index was also validated in an independent cohort. Causal inference with machine learning implied three metabolites, ß-cryptoxanthin, prolylhydroxyproline, and eicosenoylcarnitine as putative drivers of biological aging. Multiple SASP markers were also elevated in rapid agers. Together, our findings reveal that a network of metabolic pathways underlie biological aging, and the HAM index could serve as a predictor of phenotypic aging in humans.


Asunto(s)
Senescencia Celular , Secretoma , Humanos , Envejecimiento/genética , Envejecimiento/metabolismo , Metaboloma , Biomarcadores/metabolismo
2.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37373206

RESUMEN

For targeted protein panels, the ability to specifically assay post-translational modifications (PTMs) in a quantitative, sensitive, and straightforward manner would substantially advance biological and pharmacological studies. The present study highlights the effectiveness of the Affi-BAMS™ epitope-directed affinity bead capture/MALDI MS platform for quantitatively defining complex PTM marks of H3 and H4 histones. Using H3 and H4 histone peptides and isotopically labelled derivatives, this affinity bead and MALDI MS platform achieves a range of >3 orders of magnitude with a technical precision CV of <5%. Using nuclear cellular lysates, Affi-BAMS PTM-peptide capture resolves heterogeneous histone N-terminal PTMs with as little as 100 µg of starting material. In an HDAC inhibitor and MCF7 cell line model, the ability to monitor dynamic histone H3 acetylation and methylation events is further demonstrated (including SILAC quantification). Affi-BAMS (and its capacity for the multiplexing of samples and target PTM-proteins) thus provides a uniquely efficient and effective approach for analyzing dynamic epigenetic histone marks, which is critical for the regulation of chromatin structure and gene expression.


Asunto(s)
Histonas , Proteómica , Histonas/metabolismo , Espectrometría de Masas en Tándem , Procesamiento Proteico-Postraduccional , Código de Histonas , Péptidos/metabolismo , Acetilación
3.
Redox Biol ; 50: 102232, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35101798

RESUMEN

Ferroptosis and necroptosis are two pro-inflammatory cell death programs contributing to major pathologies and their inhibition has gained attention to treat a wide range of disease states. Necroptosis relies on activation of RIP1 and RIP3 kinases. Ferroptosis is triggered by oxidation of polyunsaturated phosphatidylethanolamines (PUFA-PE) by complexes of 15-Lipoxygenase (15LOX) with phosphatidylethanolamine-binding protein 1 (PEBP1). The latter, also known as RAF kinase inhibitory protein, displays promiscuity towards multiple proteins. In this study we show that RIP3 K51A kinase inactive mice have increased ferroptotic burden and worse outcome after irradiation and brain trauma rescued by anti-ferroptotic compounds Liproxstatin-1 and Ferrostatin 16-86. Given structural homology between RAF and RIP3, we hypothesized that PEBP1 acts as a necroptosis-to-ferroptosis switch interacting with either RIP3 or 15LOX. Using genetic, biochemical, redox lipidomics and computational approaches, we uncovered that PEBP1 complexes with RIP3 and inhibits necroptosis. Elevated expression combined with higher affinity enables 15LOX to pilfer PEBP1 from RIP3, thereby promoting PUFA-PE oxidation and ferroptosis which sensitizes Rip3K51A/K51A kinase-deficient mice to total body irradiation and brain trauma. This newly unearthed PEBP1/15LOX-driven mechanism, along with previously established switch between necroptosis and apoptosis, can serve multiple and diverse cell death regulatory functions across various human disease states.


Asunto(s)
Apoptosis , Ferroptosis , Animales , Muerte Celular , Ratones , Necrosis , Oxidación-Reducción , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
4.
Sci Adv ; 8(7): eabl6083, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35171671

RESUMEN

Although DNA damage is intricately linked to metabolism, the metabolic alterations that occur in response to DNA damage are not well understood. We use a DNA repair-deficient model of ERCC1-XPF in Caenorhabditis elegans to gain insights on how genotoxic stress drives aging. Using multi-omic approach, we discover that nuclear DNA damage promotes mitochondrial ß-oxidation and drives a global loss of fat depots. This metabolic shift to ß-oxidation generates acetyl-coenzyme A to promote histone hyperacetylation and an associated change in expression of immune-effector and cytochrome genes. We identify the histone acetyltransferase MYS-1, as a critical regulator of this metabolic-epigenetic axis. We show that in response to DNA damage, polyunsaturated fatty acids, especially arachidonic acid (AA) and AA-related lipid mediators, are elevated and this is dependent on mys-1. Together, these findings reveal that DNA damage alters the metabolic-epigenetic axis to drive an immune-like response that can promote age-associated decline.


Asunto(s)
Reparación del ADN , Histonas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Daño del ADN , Histonas/metabolismo , Metabolismo de los Lípidos
5.
JCI Insight ; 7(4)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35041620

RESUMEN

Total body irradiation (TBI) targets sensitive bone marrow hematopoietic cells and gut epithelial cells, causing their death and inducing a state of immunodeficiency combined with intestinal dysbiosis and nonproductive immune responses. We found enhanced Pseudomonas aeruginosa (PAO1) colonization of the gut leading to host cell death and strikingly decreased survival of irradiated mice. The PAO1-driven pathogenic mechanism includes theft-ferroptosis realized via (a) curbing of the host antiferroptotic system, GSH/GPx4, and (b) employing bacterial 15-lipoxygenase to generate proferroptotic signal - 15-hydroperoxy-arachidonoyl-PE (15-HpETE-PE) - in the intestines of irradiated and PAO1-infected mice. Global redox phospholipidomics of the ileum revealed that lysophospholipids and oxidized phospholipids, particularly oxidized phosphatidylethanolamine (PEox), represented the major factors that contributed to the pathogenic changes induced by total body irradiation and infection by PAO1. A lipoxygenase inhibitor, baicalein, significantly attenuated animal lethality, PAO1 colonization, intestinal epithelial cell death, and generation of ferroptotic PEox signals. Opportunistic PAO1 mechanisms included stimulation of the antiinflammatory lipoxin A4, production and suppression of the proinflammatory hepoxilin A3, and leukotriene B4. Unearthing complex PAO1 pathogenic/virulence mechanisms, including effects on the host anti/proinflammatory responses, lipid metabolism, and ferroptotic cell death, points toward potentially new therapeutic and radiomitigative targets.


Asunto(s)
Araquidonato 15-Lipooxigenasa/genética , Ferroptosis/genética , Regulación Neoplásica de la Expresión Génica , Leucotrienos/genética , Peróxidos Lipídicos/genética , Pseudomonas aeruginosa/efectos de la radiación , Traumatismos Experimentales por Radiación/genética , Animales , Araquidonato 15-Lipooxigenasa/biosíntesis , Células CACO-2/efectos de la radiación , Femenino , Humanos , Leucotrienos/metabolismo , Peróxidos Lipídicos/metabolismo , Ratones , Ratones Endogámicos C57BL , Pseudomonas aeruginosa/patogenicidad , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/patología
6.
Anal Chem ; 93(23): 8143-8151, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34075742

RESUMEN

The temporo-spatial organization of different cells in the tumor microenvironment (TME) is the key to understanding their complex communication networks and the immune landscape that exists within compromised tissues. Multi-omics profiling of single-interacting cells in the native TME is critical for providing further information regarding the reprograming mechanisms leading to immunosuppression and tumor progression. This requires new technologies for biomolecular profiling of phenotypically heterogeneous cells on the same tissue sample. Here, we developed a new methodology for comprehensive lipidomic and metabolomic profiling of individual cells on frozen-hydrated tissue sections using water gas cluster ion beam secondary ion mass spectrometry ((H2O)n-GCIB-SIMS) (at 1.6 µm beam spot size), followed by profiling cell-type specific lanthanide antibodies on the same tissue section using C60-SIMS (at 1.1 µm beam spot size). We revealed distinct variations of distribution and intensities of >150 key ions (e.g., lipids and important metabolites) in different types of the TME individual cells, such as actively proliferating tumor cells as well as infiltrating immune cells. The demonstrated feasibility of SIMS imaging to integrate the multi-omics profiling in the same tissue section at the single-cell level will lead to new insights into the role of lipid reprogramming and metabolic response in normal regulation or pathogenic discoordination of cell-cell interactions in a variety of tissue microenvironments.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Iones , Lípidos , Espectrometría de Masa de Ion Secundario , Microambiente Tumoral
7.
Int J Mol Sci ; 22(10)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067535

RESUMEN

We recently discovered an anti-ferroptotic mechanism inherent to M1 macrophages whereby high levels of NO● suppressed ferroptosis via inhibition of hydroperoxy-eicosatetraenoyl-phosphatidylethanolamine (HpETE-PE) production by 15-lipoxygenase (15LOX) complexed with PE-binding protein 1 (PEBP1). However, the mechanism of NO● interference with 15LOX/PEBP1 activity remained unclear. Here, we use a biochemical model of recombinant 15LOX-2 complexed with PEBP1, LC-MS redox lipidomics, and structure-based modeling and simulations to uncover the mechanism through which NO● suppresses ETE-PE oxidation. Our study reveals that O2 and NO● use the same entry pores and channels connecting to 15LOX-2 catalytic site, resulting in a competition for the catalytic site. We identified residues that direct O2 and NO● to the catalytic site, as well as those stabilizing the esterified ETE-PE phospholipid tail. The functional significance of these residues is supported by in silico saturation mutagenesis. We detected nitrosylated PE species in a biochemical system consisting of 15LOX-2/PEBP1 and NO● donor and in RAW264.7 M2 macrophages treated with ferroptosis-inducer RSL3 in the presence of NO●, in further support of the ability of NO● to diffuse to, and react at, the 15LOX-2 catalytic site. The results provide first insights into the molecular mechanism of repression of the ferroptotic Hp-ETE-PE production by NO●.


Asunto(s)
Ferroptosis/fisiología , Óxido Nítrico/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Muerte Celular/fisiología , Humanos , Lipidómica , Macrófagos/metabolismo , Simulación de Dinámica Molecular , Oxidación-Reducción , Fosfatidiletanolaminas , Fosfolípidos/metabolismo
8.
Redox Biol ; 45: 102045, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34167028

RESUMEN

Ferroptosis is a redox-driven type of regulated cell death program arising from maladaptation of three metabolic pathways: glutathione homeostasis, iron handling and lipid peroxidation. Though GSH/Gpx4 is the predominant system detoxifying phospholipid hydroperoxides (PLOOH) in mammalian cells, recently Gpx4-independent regulators of ferroptosis like ferroptosis suppressor protein 1 (FSP1) in resistant cancer lines and iNOS/NO• in M1 macrophages have been discovered. We previously reported that Pseudomonas aeruginosa (PA) utilizes its 15- lipoxygenase (pLoxA) to trigger ferroptotic death in epithelial cells by oxidizing the host arachidonoyl-phosphatidylethanolamine (ETE-PE) into pro-ferroptotic 15-hydroperoxy- arachidonyl-PE (15-HpETE-PE). Here we demonstrate that PA degrades the host GPx4 defense by activating the lysosomal chaperone-mediated autophagy (CMA). In response, the host stimulates the iNOS/NO•-driven anti-ferroptotic mechanism to stymie lipid peroxidation and protect GPx4/GSH-deficient cells. By using a co-culture model system, we showed that macrophage-produced NO• can distantly prevent PA stimulated ferroptosis in epithelial cells as an inter-cellular mechanism. We further established that suppression of ferroptosis in epithelial cells by NO• is enabled through the suppression of phospholipid peroxidation, particularly the production of pro-ferroptotic 15-HpETE-PE signals. Pharmacological targeting of iNOS (NO• generation) attenuated its anti-ferroptotic function. In conclusion, our findings define a new inter-cellular ferroptosis suppression mechanism which may represent a new strategy of the host against P. aeruginosa induced theft-ferroptosis.


Asunto(s)
Ferroptosis , Animales , Peroxidación de Lípido , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Pseudomonas aeruginosa , Compuestos de Sulfhidrilo , Robo
9.
Angew Chem Int Ed Engl ; 60(21): 11784-11788, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33684237

RESUMEN

Peroxidized phosphatidylethanolamine (PEox) species have been identified by liquid chromatography mass spectrometry (LC-MS) as predictive biomarkers of ferroptosis, a new program of regulated cell death. However, the presence and subcellular distribution of PEox in specific cell types and tissues have not been directly detected by imaging protocols. By applying gas cluster ion beam secondary ion mass spectrometry (GCIB-SIMS) imaging with a 70 keV (H2 O)n+ (n>28 000) cluster ion beam, we were able to map PEox with 1.2 µm spatial resolution at the single cell/subcellular level in ferroptotic H9c2 cardiomyocytes and cortical/hippocampal neurons after traumatic brain injury. Application of this protocol affords visualization of physiologically relevant levels of very low abundance (20 pmol µmol-1 lipid) peroxidized lipids in subcellular compartments and their accumulation in disease conditions.


Asunto(s)
Ferroptosis/fisiología , Peroxidación de Lípido/fisiología , Fosfatidiletanolaminas/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Carbolinas/farmacología , Línea Celular , Ferroptosis/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas Sprague-Dawley , Espectrometría de Masa de Ion Secundario/métodos
10.
Nat Chem Biol ; 17(4): 465-476, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542532

RESUMEN

Ferroptosis, triggered by discoordination of iron, thiols and lipids, leads to the accumulation of 15-hydroperoxy (Hp)-arachidonoyl-phosphatidylethanolamine (15-HpETE-PE), generated by complexes of 15-lipoxygenase (15-LOX) and a scaffold protein, phosphatidylethanolamine (PE)-binding protein (PEBP)1. As the Ca2+-independent phospholipase A2ß (iPLA2ß, PLA2G6 or PNPLA9 gene) can preferentially hydrolyze peroxidized phospholipids, it may eliminate the ferroptotic 15-HpETE-PE death signal. Here, we demonstrate that by hydrolyzing 15-HpETE-PE, iPLA2ß averts ferroptosis, whereas its genetic or pharmacological inactivation sensitizes cells to ferroptosis. Given that PLA2G6 mutations relate to neurodegeneration, we examined fibroblasts from a patient with a Parkinson's disease (PD)-associated mutation (fPDR747W) and found selectively decreased 15-HpETE-PE-hydrolyzing activity, 15-HpETE-PE accumulation and elevated sensitivity to ferroptosis. CRISPR-Cas9-engineered Pnpla9R748W/R748W mice exhibited progressive parkinsonian motor deficits and 15-HpETE-PE accumulation. Elevated 15-HpETE-PE levels were also detected in midbrains of rotenone-infused parkinsonian rats and α-synuclein-mutant SncaA53T mice, with decreased iPLA2ß expression and a PD-relevant phenotype. Thus, iPLA2ß is a new ferroptosis regulator, and its mutations may be implicated in PD pathogenesis.


Asunto(s)
Ferroptosis/fisiología , Fosfolipasas A2 Grupo VI/metabolismo , Animales , Araquidonato 15-Lipooxigenasa/metabolismo , Modelos Animales de Enfermedad , Femenino , Fosfolipasas A2 Grupo VI/fisiología , Humanos , Hierro/metabolismo , Leucotrienos/metabolismo , Metabolismo de los Lípidos/fisiología , Peróxidos Lipídicos/metabolismo , Lípidos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Enfermedad de Parkinson/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Fosfolipasas/metabolismo , Fosfolípidos/metabolismo , Ratas , Ratas Endogámicas Lew
11.
Redox Biol ; 38: 101744, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33126055

RESUMEN

Hydroperoxy-eicosatetraenoyl-phosphatidylethanolamine (HpETE-PE) is a ferroptotic cell death signal. HpETE-PE is produced by the 15-Lipoxygenase (15LOX)/Phosphatidylethanolamine Binding Protein-1 (PEBP1) complex or via an Fe-catalyzed non-enzymatic radical reaction. Ferrostatin-1 (Fer-1), a common ferroptosis inhibitor, is a lipophilic radical scavenger but a poor 15LOX inhibitor arguing against 15LOX having a role in ferroptosis. In the current work, we demonstrate that Fer-1 does not affect 15LOX alone, however, it effectively inhibits HpETE-PE production by the 15LOX/PEBP1 complex. Computational molecular modeling shows that Fer-1 binds to the 15LOX/PEBP1 complex at three sites and could disrupt the catalytically required allosteric motions of the 15LOX/PEBP1 complex. Using nine ferroptosis cell/tissue models, we show that HpETE-PE is produced by the 15LOX/PEBP1 complex and resolve the long-existing Fer-1 anti-ferroptotic paradox.


Asunto(s)
Ferroptosis , Muerte Celular , Ciclohexilaminas , Oxidación-Reducción , Fenilendiaminas
12.
Exp Neurol ; 329: 113307, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32289317

RESUMEN

Mitochondria are essential for neuronal function because they serve not only to sustain energy and redox homeostasis but also are harbingers of death. A dysregulated mitochondrial network can cascade until function is irreparably lost, dooming cells. TBI is most prevalent in the young and comes at significant personal and societal costs. Traumatic brain injury (TBI) triggers a biphasic and mechanistically heterogenous response and this mechanistic heterogeneity has made the development of standardized treatments challenging. The secondary phase of TBI injury evolves over hours and days after the initial insult, providing a window of opportunity for intervention. However, no FDA approved treatment for neuroprotection after TBI currently exists. With recent advances in detection techniques, there has been increasing recognition of the significance and roles of mitochondrial redox lipid signaling in both acute and chronic central nervous system (CNS) pathologies. Oxidized lipids and their downstream products result from and contribute to TBI pathogenesis. Therapies targeting the mitochondrial lipid composition and redox state show promise in experimental TBI and warrant further exploration. In this review, we provide 1) an overview for mitochondrial redox homeostasis with emphasis on glutathione metabolism, 2) the key mechanisms of TBI mitochondrial injury, 3) the pathways of mitochondria specific phospholipid cardiolipin oxidation, and 4) review the mechanisms of mitochondria quality control in TBI with consideration of the roles lipids play in this process.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Metabolismo de los Lípidos/fisiología , Mitocondrias/metabolismo , Transducción de Señal/fisiología , Animales , Lesiones Traumáticas del Encéfalo/patología , Humanos , Mitocondrias/patología , Oxidación-Reducción , Estrés Oxidativo/fisiología
13.
Cell Chem Biol ; 27(4): 387-408, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32275865

RESUMEN

Redox balance is essential for normal brain, hence dis-coordinated oxidative reactions leading to neuronal death, including programs of regulated death, are commonly viewed as an inevitable pathogenic penalty for acute neuro-injury and neurodegenerative diseases. Ferroptosis is one of these programs triggered by dyshomeostasis of three metabolic pillars: iron, thiols, and polyunsaturated phospholipids. This review focuses on: (1) lipid peroxidation (LPO) as the major instrument of cell demise, (2) iron as its catalytic mechanism, and (3) thiols as regulators of pro-ferroptotic signals, hydroperoxy lipids. Given the central role of LPO, we discuss the engagement of selective and specific enzymatic pathways versus random free radical chemical reactions in the context of the phospholipid substrates, their biosynthesis, intracellular location, and related oxygenating machinery as participants in ferroptotic cascades. These concepts are discussed in the light of emerging neuro-therapeutic approaches controlling intracellular production of pro-ferroptotic phospholipid signals and their non-cell-autonomous spreading, leading to ferroptosis-associated necroinflammation.


Asunto(s)
Ferroptosis , Peroxidación de Lípido , Encéfalo/metabolismo , Proteínas de Unión al ADN/metabolismo , Glutatión/química , Glutatión/metabolismo , Humanos , Hierro/química , Hierro/metabolismo , Lipooxigenasas/química , Lipooxigenasas/metabolismo , Oxidación-Reducción , Peroxidasas/metabolismo , Proteínas de Unión al ARN/metabolismo
14.
Nat Chem Biol ; 16(3): 278-290, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32080625

RESUMEN

Ferroptotic death is the penalty for losing control over three processes-iron metabolism, lipid peroxidation and thiol regulation-that are common in the pro-inflammatory environment where professional phagocytes fulfill their functions and yet survive. We hypothesized that redox reprogramming of 15-lipoxygenase (15-LOX) during the generation of pro-ferroptotic signal 15-hydroperoxy-eicosa-tetra-enoyl-phosphatidylethanolamine (15-HpETE-PE) modulates ferroptotic endurance. Here, we have discovered that inducible nitric oxide synthase (iNOS)/NO•-enrichment of activated M1 (but not alternatively activated M2) macrophages/microglia modulates susceptibility to ferroptosis. Genetic or pharmacologic depletion/inactivation of iNOS confers sensitivity on M1 cells, whereas NO• donors empower resistance of M2 cells to ferroptosis. In vivo, M1 phagocytes, in comparison to M2 phagocytes, exert higher resistance to pharmacologically induced ferroptosis. This resistance is diminished in iNOS-deficient cells in the pro-inflammatory conditions of brain trauma or the tumour microenvironment. The nitroxygenation of eicosatetraenoyl (ETE)-PE intermediates and oxidatively truncated species by NO• donors and/or suppression of NO• production by iNOS inhibitors represent a novel redox mechanism of regulation of ferroptosis in pro-inflammatory conditions.


Asunto(s)
Ferroptosis/fisiología , Macrófagos/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Animales , Araquidonato 15-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/fisiología , Muerte Celular , Femenino , Hierro/metabolismo , Hierro/fisiología , Leucotrienos/metabolismo , Peroxidación de Lípido/fisiología , Peróxidos Lipídicos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Óxido Nítrico Sintasa de Tipo II/fisiología , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
15.
Front Endocrinol (Lausanne) ; 11: 628079, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33679610

RESUMEN

A huge diversification of phospholipids, forming the aqueous interfaces of all biomembranes, cannot be accommodated within a simple concept of their role as membrane building blocks. Indeed, a number of signaling functions of (phospho)lipid molecules has been discovered. Among these signaling lipids, a particular group of oxygenated polyunsaturated fatty acids (PUFA), so called lipid mediators, has been thoroughly investigated over several decades. This group includes oxygenated octadecanoids, eicosanoids, and docosanoids and includes several hundreds of individual species. Oxygenation of PUFA can occur when they are esterified into major classes of phospholipids. Initially, these events have been associated with non-specific oxidative injury of biomembranes. An alternative concept is that these post-synthetically oxidatively modified phospholipids and their adducts with proteins are a part of a redox epiphospholipidome that represents a rich and versatile language for intra- and inter-cellular communications. The redox epiphospholipidome may include hundreds of thousands of individual molecular species acting as meaningful biological signals. This review describes the signaling role of oxygenated phospholipids in programs of regulated cell death. Although phospholipid peroxidation has been associated with almost all known cell death programs, we chose to discuss enzymatic pathways activated during apoptosis and ferroptosis and leading to peroxidation of two phospholipid classes, cardiolipins (CLs) and phosphatidylethanolamines (PEs). This is based on the available LC-MS identification and quantitative information on the respective peroxidation products of CLs and PEs. We focused on molecular mechanisms through which two proteins, a mitochondrial hemoprotein cytochrome c (cyt c), and non-heme Fe lipoxygenase (LOX), change their catalytic properties to fulfill new functions of generating oxygenated CL and PE species. Given the high selectivity and specificity of CL and PE peroxidation we argue that enzymatic reactions catalyzed by cyt c/CL complexes and 15-lipoxygenase/phosphatidylethanolamine binding protein 1 (15LOX/PEBP1) complexes dominate, at least during the initiation stage of peroxidation, in apoptosis and ferroptosis. We contrast cell-autonomous nature of CLox signaling in apoptosis correlating with its anti-inflammatory functions vs. non-cell-autonomous ferroptotic signaling facilitating pro-inflammatory (necro-inflammatory) responses. Finally, we propose that small molecule mechanism-based regulators of enzymatic phospholipid peroxidation may lead to highly specific anti-apoptotic and anti-ferroptotic therapeutic modalities.


Asunto(s)
Apoptosis/fisiología , Ácidos Grasos Insaturados/metabolismo , Lipidómica/métodos , Fosfolípidos/metabolismo , Transducción de Señal/fisiología , Animales , Catálisis , Muerte Celular/fisiología , Ferroptosis/fisiología , Humanos , Oxidación-Reducción
16.
J Leukoc Biol ; 106(1): 57-81, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31071242

RESUMEN

In addition to the known prominent role of polyunsaturated (phospho)lipids as structural blocks of biomembranes, there is an emerging understanding of another important function of these molecules as a highly diversified signaling language utilized for intra- and extracellular communications. Technological developments in high-resolution mass spectrometry facilitated the development of a new branch of metabolomics, redox lipidomics. Analysis of lipid peroxidation reactions has already identified specific enzymatic mechanisms responsible for the biosynthesis of several unique signals in response to inflammation and regulated cell death programs. Obtaining comprehensive information about millions of signals encoded by oxidized phospholipids, represented by thousands of interactive reactions and pleiotropic (patho)physiological effects, is a daunting task. However, there is still reasonable hope that significant discoveries, of at least some of the important contributors to the overall overwhelmingly complex network of interactions triggered by inflammation, will lead to the discovery of new small molecule regulators and therapeutic modalities. For example, suppression of the production of AA-derived pro-inflammatory mediators, HXA3 and LTB4, by an iPLA2 γ inhibitor, R-BEL, mitigated injury associated with the activation of pro-inflammatory processes in animals exposed to whole-body irradiation. Further, technological developments promise to make redox lipidomics a powerful approach in the arsenal of diagnostic and therapeutic instruments for personalized medicine of inflammatory diseases and conditions.


Asunto(s)
Apoptosis , Inflamación/metabolismo , Lipidómica , Transducción de Señal/fisiología , Animales , Ácidos Grasos Insaturados/metabolismo , Humanos , Inflamación/etiología , Hierro/metabolismo , Peroxidación de Lípido , Oxidación-Reducción , Irradiación Corporal Total
17.
Chem Phys Lipids ; 221: 93-107, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30928338

RESUMEN

Aerobic life is based on numerous metabolic oxidation reactions as well as biosynthesis of oxygenated signaling compounds. Among the latter are the myriads of oxygenated lipids including a well-studied group of polyunsaturated fatty acids (PUFA) - octadecanoids, eicosanoids, and docosanoids. During the last two decades, remarkable progress in liquid-chromatography-mass spectrometry has led to significant progress in the characterization of oxygenated PUFA-containing phospholipids, thus designating the emergence of a new field of lipidomics, redox lipidomics. Although non-enzymatic free radical reactions of lipid peroxidation have been mostly associated with the aberrant metabolism typical of acute injury or chronic degenerative processes, newly accumulated evidence suggests that enzymatically catalyzed (phospho)lipid oxygenation reactions are essential mechanisms of many physiological pathways. In this review, we discuss a variety of contemporary protocols applicable for identification and quantitative characterization of different classes of peroxidized (phospho)lipids. We describe applications of different types of LCMS for analysis of peroxidized (phospho)lipids, particularly cardiolipins and phosphatidylethanolalmines, in two important types of programmed cell death - apoptosis and ferroptosis. We discuss the role of peroxidized phosphatidylserines in phagocytotic signaling. We exemplify the participation of peroxidized neutral lipids, particularly tri-acylglycerides, in immuno-suppressive signaling in cancer. We also consider new approaches to exploring the spatial distribution of phospholipids in the context of their oxidizability by MS imaging, including the latest achievements in high resolution imaging techniques. We present innovative approaches to the interpretation of LC-MS data, including audio-representation analysis. Overall, we emphasize the role of redox lipidomics as a communication language, unprecedented in diversity and richness, through the analysis of peroxidized (phospho)lipids.


Asunto(s)
Lipidómica , Fosfolípidos/química , Cromatografía Liquida , Humanos , Espectrometría de Masas , Oxidación-Reducción
18.
Exp Neurol ; 316: 63-73, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30981805

RESUMEN

Cardiolipin (CL) is a mitochondria-specific phospholipid that is central to maintenance and regulation of mitochondrial bioenergetic and metabolic functions. CL molecular species display great tissue variation with brain exhibiting a distinct, highly diverse CL population. We recently showed that the appearance of unique brain-type CLs in plasma could serve as a brain-specific marker of mitochondrial/tissue injury in patients after cardiac arrest. Mitochondrial dysfunction has been increasingly implicated as a critical mechanism underlying the pathogenesis of traumatic brain injury (TBI). Therefore, we hypothesized that unique, brain-specific CL species from the injured brain are released to the peripheral circulation after TBI. To test this hypothesis, we performed a high-resolution mass spectrometry based phospholipidomics analysis of post-natal day (PND)17 rat brain and plasma after controlled cortical impact. We found a time-dependent increase in plasma CLs after TBI including the aforementioned brain-specific CL species early after injury, whereas CLs were significantly decreased in the injured brain. Compositional and quantitative correlational analysis suggested a possible release of CL into the systemic circulation following TBI. The identification of brain-type CLs in systemic circulation may indicate underlying mitochondrial dysfunction/loss after TBI. They may have potential as pharmacodynamics response biomarkers for targeted therapies.


Asunto(s)
Química Encefálica , Cardiolipinas/análisis , Cardiolipinas/metabolismo , Traumatismos Craneocerebrales/metabolismo , Animales , Lesiones Traumáticas del Encéfalo , Cardiolipinas/sangre , Corteza Cerebral/lesiones , Corteza Cerebral/metabolismo , Lipidómica , Masculino , Espectrometría de Masas , Mitocondrias/metabolismo , Fosfolípidos/metabolismo , Ratas , Ratas Sprague-Dawley
19.
Crit Care Med ; 47(4): e292-e300, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30855329

RESUMEN

OBJECTIVES: Brain mitochondrial dysfunction limits neurologic recovery after cardiac arrest. Brain polyunsaturated cardiolipins, mitochondria-unique and functionally essential phospholipids, have unprecedented diversification. Since brain cardiolipins are not present in plasma normally, we hypothesized their appearance would correlate with brain injury severity early after cardiac arrest and return of spontaneous circulation. DESIGN: Observational case-control study. SETTING: Two medical centers within one city. PARTICIPANTS (SUBJECTS): We enrolled 41 adult cardiac arrest patients in whom blood could be obtained within 6 hours of resuscitation. Two subjects were excluded following outlier analysis. Ten healthy subjects were controls. Sprague-Dawley rats were used in asphyxial cardiac arrest studies. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We developed a high-resolution liquid chromatography/mass spectrometry method and determined cardiolipins speciation in human brain, heart, and plasma within 6 hours of (return of spontaneous circulation) from 39 patients with cardiac arrest, 5 with myocardial infarction, and 10 healthy controls. Cerebral score was derived from brain-specific cardiolipins identified in plasma of patients with varying neurologic injury and outcome. Using a rat model of cardiac arrest, cardiolipins were quantified in plasma, brain, and heart. Human brain exhibited a highly diverse cardiolipinome compared with heart that allowed the identification of brain-specific cardiolipins. Nine of 26 brain-specific cardiolipins were detected in plasma and correlated with brain injury. The cerebral score correlated with early neurologic injury and predicted discharge neurologic/functional outcome. Cardiolipin (70:5) emerged as a potential point-of-care marker predicting injury severity and outcome. In rat cardiac arrest, a significant reduction in hippocampal cardiolipins corresponded to their release from the brain into systemic circulation. Cerebral score was significantly increased in 10 minutes versus 5 minutes no-flow cardiac arrest and naïve controls. CONCLUSIONS: Brain-specific cardiolipins accumulate in plasma early after return of spontaneous circulation and proportional to neurologic injury representing a promising novel biomarker.


Asunto(s)
Lesiones Encefálicas/metabolismo , Cardiolipinas/sangre , Cardiomiopatías/metabolismo , Mitocondrias Cardíacas/metabolismo , Animales , Reanimación Cardiopulmonar/métodos , Estudios de Casos y Controles , Femenino , Cromatografía de Gases y Espectrometría de Masas/métodos , Paro Cardíaco/metabolismo , Humanos , Masculino , Oxidación-Reducción , Ratas , Ratas Sprague-Dawley
20.
Neuropharmacology ; 145(Pt B): 209-219, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30009835

RESUMEN

Mitochondria are a keystone of neuronal function, serving a dual role as sustainer of life and harbinger of death. While mitochondria are indispensable for energy production, a dysregulated mitochondrial network can spell doom for both neurons and the functions they provide. Traumatic brain injury (TBI) is a complex and biphasic injury, often affecting children and young adults. The primary pathological mechanism of TBI is mechanical, too rapid to be mitigated by anything but prevention. However, the secondary injury of TBI evolves over hours and days after the initial insult providing a window of opportunity for intervention. As a nexus point of both survival and death during this second phase, targeting mitochondrial pathology in TBI has long been an attractive strategy. Often these attempts are mired by efficacy-limiting unintended off-target effects. Specific delivery to and enrichment of therapeutics at their submitochondrial site of action can reduce deleterious effects and increase potency. Mitochondrial drug localization is accomplished using (1) the mitochondrial membrane potential, (2) affinity of a carrier to mitochondria-specific components (e.g. lipids), (3) piggybacking on the cells own mitochondria trafficking systems, or (4) nanoparticle-based approaches. In this review, we briefly consider the mitochondrial delivery strategies and drug targets that illustrate the promise of these mitochondria-specific approaches in the design of TBI pharmacotherapy. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".


Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Fármacos del Sistema Nervioso Central/administración & dosificación , Mitocondrias/efectos de los fármacos , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...