Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Front Cardiovasc Med ; 9: 868466, 2022.
Article En | MEDLINE | ID: mdl-35548426

Recent advances in technology such as the introduction of high throughput multidimensional tools like single cell sequencing help to characterize the cellular composition of the human heart. The diversity of cell types that has been uncovered by such approaches is by far greater than ever expected before. Accurate identification of the cellular variety and dynamics will not only facilitate a much deeper understanding of cardiac physiology but also provide important insights into mechanisms underlying its pathological transformation. Distinct cellular patterns of cardiac cell clusters may allow differentiation between a healthy heart and a sick heart while potentially predicting future disease at much earlier stages than currently possible. These advances have already extensively improved and will ultimately revolutionize our knowledge of the mechanisms underlying cardiovascular disease as such. In this review, we will provide an overview of the cells present in the human and rodent heart as well as genes that may be used for their identification.

2.
Arterioscler Thromb Vasc Biol ; 41(10): 2563-2574, 2021 10.
Article En | MEDLINE | ID: mdl-34348490

Objective: The accumulation of inflammatory leukocytes is a prerequisite of adipose tissue inflammation during cardiometabolic disease. We previously reported that a genetic deficiency of the intracellular signaling adaptor TRAF5 (TNF [tumor necrosis factor] receptor-associated factor 5) accelerates atherosclerosis in mice by increasing inflammatory cell recruitment. Here, we tested the hypothesis that an impairment of TRAF5 signaling modulates adipose tissue inflammation and its metabolic complications in a model of diet-induced obesity in mice. Approach and Results: To induce diet-induced obesity and adipose tissue inflammation, wild-type or Traf5-/- mice consumed a high-fat diet for 18 weeks. Traf5-/- mice showed an increased weight gain, impaired insulin tolerance, and increased fasting blood glucose. Weight of livers and peripheral fat pads was increased in Traf5-/- mice, whereas lean tissue weight and growth were not affected. Flow cytometry of the stromal vascular fraction of visceral adipose tissue from Traf5-/- mice revealed an increase in cytotoxic T cells, CD11c+ macrophages, and increased gene expression of proinflammatory cytokines and chemokines. At the level of cell types, expression of TNF[alpha], MIP (macrophage inflammatory protein)-1[alpha], MCP (monocyte chemoattractant protein)-1, and RANTES (regulated on activation, normal T-cell expressed and secreted) was significantly upregulated in Traf5-deficient adipocytes but not in Traf5-deficient leukocytes from visceral adipose tissue. Finally, Traf5 expression was lower in adipocytes from obese patients and mice and recovered in adipose tissue of obese patients one year after bariatric surgery. Conclusions: We show that a genetic deficiency of TRAF5 in mice aggravates diet-induced obesity and its metabolic derangements by a proinflammatory response in adipocytes. Our data indicate that TRAF5 may promote anti-inflammatory and obesity-preventing signaling events in adipose tissue.


Adipocytes/metabolism , Adipose Tissue/metabolism , Cytokines/metabolism , Inflammation Mediators/metabolism , Lymphocytes/metabolism , Obesity/metabolism , Panniculitis/metabolism , TNF Receptor-Associated Factor 5/deficiency , Adipocytes/immunology , Adipocytes/pathology , Adipose Tissue/immunology , Adipose Tissue/pathology , Adiposity , Adult , Aged , Animals , Diet, High-Fat , Disease Models, Animal , Female , Humans , Lymphocytes/immunology , Macrophages/immunology , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Obesity/genetics , Obesity/immunology , Obesity/pathology , Panniculitis/genetics , Panniculitis/immunology , Panniculitis/pathology , Signal Transduction , TNF Receptor-Associated Factor 5/genetics
3.
Cells ; 10(8)2021 08 08.
Article En | MEDLINE | ID: mdl-34440796

The purpose of this study is to investigate the role of platelet bone morphogenetic proteins (BMP)-4 during vascular inflammation and remodeling in a mouse model of carotid wire injury. Transgenic mice with a platelet-specific deletion of BMP-4 (BMP4Plt-/-) were generated. Intravital microscopy was performed to evaluate leukocyte adhesion to the vessel wall. Expression of adhesion molecules and chemokines were analyzed. Platelet-leukocyte aggregates (PLAs) were evaluated using flow cytometry. For carotid wire injury, BMP4Plt-/- mice were further crossed with LDLr-/- mice (BMP4Plt-/-/LDLr-/-) and fed with a high cholesterol diet for 2-weeks. Carotid wire injury was performed, and re-endothelialization and neointimal formation were evaluated. In comparison to the control mice, stimulation with TNFα resulted in fewer rolling and adherent leukocytes to the vessel wall in the BMP4Plt-/- mice. mRNA and protein expression of P-selectin and adhesion molecules were reduced in the aorta of the BMP4Plt-/- mice. In platelets from the BMP4Plt-/- mice, the expression of P-selectin was reduced, and fewer PLA formations were measured than in the control mice. Loss of platelet BMP-4 further prevented neointima formation after carotid wire injury. Endothelial regeneration after injury was decelerated in the BMP4Plt-/- mice, and confirmed in-vitro, where the deletion of platelet BMP-4 inhibited endothelial cell proliferation and migration. We demonstrate for the first time that platelet BMP-4 is involved during vascular inflammation and remodeling. This is partially mediated by the inhibition of platelet activation, reduced expression of adhesion molecules and inflammatory responses. Our findings identify platelet BMP-4 as a mediator of vascular inflammation in early atherosclerosis and restenosis.


Aorta/pathology , Blood Platelets/metabolism , Bone Morphogenetic Protein 4/metabolism , Carotid Artery Injuries/metabolism , Inflammation/metabolism , Neointima/metabolism , Animals , Bone Morphogenetic Protein 4/genetics , Carotid Artery Injuries/genetics , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Line , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression , Inflammation/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism
4.
Basic Res Cardiol ; 116(1): 17, 2021 03 15.
Article En | MEDLINE | ID: mdl-33721106

The monocyte ß2-integrin Mac-1 is crucial for leukocyte-endothelium interaction, rendering it an attractive therapeutic target for acute and chronic inflammation. Using phage display, a Designed-Ankyrin-Repeat-Protein (DARPin) was selected as a novel binding protein targeting and blocking the αM I-domain, an activation-specific epitope of Mac-1. This DARPin, named F7, specifically binds to activated Mac-1 on mouse and human monocytes as determined by flow cytometry. Homology modelling and docking studies defined distinct interaction sites which were verified by mutagenesis. Intravital microscopy showed reduced leukocyte-endothelium adhesion in mice treated with this DARPin. Using mouse models of sepsis, myocarditis and ischaemia/reperfusion injury, we demonstrate therapeutic anti-inflammatory effects. Finally, the activated Mac-1-specific DARPin is established as a tool to detect monocyte activation in patients receiving extra-corporeal membrane oxygenation, as well as suffering from sepsis and ST-elevation myocardial infarction. The activated Mac-1-specific DARPin F7 binds preferentially to activated monocytes, detects inflammation in critically ill patients, and inhibits monocyte and neutrophil function as an efficient new anti-inflammatory agent.


Anti-Inflammatory Agents/pharmacology , Designed Ankyrin Repeat Proteins/pharmacology , Macrophage-1 Antigen/metabolism , Monocytes/drug effects , Myocardial Infarction/drug therapy , Myocarditis/drug therapy , Myocardium/metabolism , Sepsis/drug therapy , Animals , Cell Surface Display Techniques , Cells, Cultured , Designed Ankyrin Repeat Proteins/genetics , Disease Models, Animal , Epitopes , Extracorporeal Membrane Oxygenation , Humans , Macrophage-1 Antigen/genetics , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Molecular Docking Simulation , Monocytes/immunology , Monocytes/metabolism , Myocardial Infarction/immunology , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocarditis/immunology , Myocarditis/metabolism , Myocarditis/physiopathology , Myocardium/immunology , Myocardium/pathology , Proof of Concept Study , Protein Binding , ST Elevation Myocardial Infarction/immunology , ST Elevation Myocardial Infarction/metabolism , Sepsis/immunology , Sepsis/metabolism , Sepsis/physiopathology , Ventricular Function, Left/drug effects
5.
Thromb Haemost ; 121(11): 1530-1540, 2021 11.
Article En | MEDLINE | ID: mdl-33618394

OBJECTIVES: The co-stimulatory CD40L-CD40 dyad exerts a critical role in atherosclerosis by modulating leukocyte accumulation into developing atherosclerotic plaques. The requirement for cell-type specific expression of both molecules, however, remains elusive. Here, we evaluate the contribution of CD40 expressed on endothelial cells (ECs) in a mouse model of atherosclerosis. METHODS AND RESULTS: Atherosclerotic plaques of apolipoprotein E-deficient (Apoe -/- ) mice and humans displayed increased expression of CD40 on ECs compared with controls. To interrogate the role of CD40 on ECs in atherosclerosis, we induced EC-specific (BmxCreERT2-driven) deficiency of CD40 in Apoe -/- mice. After feeding a chow diet for 25 weeks, EC-specific deletion of CD40 (iEC-CD40) ameliorated plaque lipid deposition and lesional macrophage accumulation but increased intimal smooth muscle cell and collagen content, while atherosclerotic lesion size did not change. Leukocyte adhesion to the vessel wall was impaired in iEC-CD40-deficient mice as demonstrated by intravital microscopy. In accord, expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) in the vascular endothelium declined after deletion of CD40. In vitro, antibody-mediated inhibition of human endothelial CD40 significantly abated monocyte adhesion on ECs. CONCLUSION: Endothelial deficiency of CD40 in mice promotes structural features associated with a stable plaque phenotype in humans and decreases leukocyte adhesion. These results suggest that endothelial-expressed CD40 contributes to inflammatory cell migration and consecutive plaque formation in atherogenesis.


Aorta/metabolism , Aortic Diseases/metabolism , Atherosclerosis/metabolism , CD40 Antigens/deficiency , Chemotaxis, Leukocyte , Endothelial Cells/metabolism , Macrophages/metabolism , Monocytes/metabolism , Animals , Aorta/immunology , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/immunology , Aortic Diseases/pathology , Apoptosis , Atherosclerosis/genetics , Atherosclerosis/immunology , Atherosclerosis/pathology , CD40 Antigens/genetics , Cell Adhesion , Cells, Cultured , Coculture Techniques , Disease Models, Animal , Endothelial Cells/immunology , Endothelial Cells/pathology , Humans , Intercellular Adhesion Molecule-1/metabolism , Macrophages/immunology , Male , Mice, Knockout, ApoE , Monocytes/immunology , Plaque, Atherosclerotic , Signal Transduction , Vascular Cell Adhesion Molecule-1/metabolism
6.
Sci Transl Med ; 13(580)2021 02 10.
Article En | MEDLINE | ID: mdl-33568522

Heart failure with preserved ejection fraction (HFpEF) is a highly prevalent and intractable form of cardiac decompensation commonly associated with diastolic dysfunction. Here, we show that diastolic dysfunction in patients with HFpEF is associated with a cardiac deficit in nicotinamide adenine dinucleotide (NAD+). Elevating NAD+ by oral supplementation of its precursor, nicotinamide, improved diastolic dysfunction induced by aging (in 2-year-old C57BL/6J mice), hypertension (in Dahl salt-sensitive rats), or cardiometabolic syndrome (in ZSF1 obese rats). This effect was mediated partly through alleviated systemic comorbidities and enhanced myocardial bioenergetics. Simultaneously, nicotinamide directly improved cardiomyocyte passive stiffness and calcium-dependent active relaxation through increased deacetylation of titin and the sarcoplasmic reticulum calcium adenosine triphosphatase 2a, respectively. In a long-term human cohort study, high dietary intake of naturally occurring NAD+ precursors was associated with lower blood pressure and reduced risk of cardiac mortality. Collectively, these results suggest NAD+ precursors, and especially nicotinamide, as potential therapeutic agents to treat diastolic dysfunction and HFpEF in humans.


Heart Failure , Animals , Cohort Studies , Heart Failure/drug therapy , Humans , Mice , Mice, Inbred C57BL , Niacinamide/pharmacology , Niacinamide/therapeutic use , Rats , Rats, Inbred Dahl , Stroke Volume
7.
Sci Rep ; 9(1): 17937, 2019 11 29.
Article En | MEDLINE | ID: mdl-31784656

Diabetes worsens atherosclerosis progression and leads to a defect in repair of arteries after cholesterol reduction, a process termed regression. Empagliflozin reduces blood glucose levels via inhibition of the sodium glucose cotransporter 2 (SGLT-2) in the kidney and has been shown to lead to a marked reduction in cardiovascular events in humans. To determine whether glucose lowering by empagliflozin accelerates atherosclerosis regression in a mouse model, male C57BL/6J mice were treated intraperitoneally with LDLR- and SRB1- antisense oligonucleotides and fed a high cholesterol diet for 16 weeks to induce severe hypercholesterolemia and atherosclerosis progression. At week 14 all mice were rendered diabetic by streptozotocin (STZ) injections. At week 16 a baseline group was sacrificed and displayed substantial atherosclerosis of the aortic root. In the remaining mice, plasma cholesterol was lowered by switching to chow diet and treatment with LDLR sense oligonucleotides to induce atherosclerosis regression. These mice then received either empagliflozin or vehicle for three weeks. Atherosclerotic plaques in the empagliflozin treated mice were significantly smaller, showed decreased lipid and CD68+ macrophage content, as well as greater collagen content. Proliferation of plaque resident macrophages and leukocyte adhesion to the vascular wall were significantly decreased in empagliflozin-treated mice. In summary, plasma glucose lowering by empagliflozin improves plaque regression in diabetic mice.


Atherosclerosis/drug therapy , Atherosclerosis/etiology , Benzhydryl Compounds/therapeutic use , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Glucosides/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Animals , Atherosclerosis/blood , Blood Glucose/analysis , Diabetes Mellitus, Experimental/blood , Male , Mice , Mice, Inbred C57BL , Plaque, Atherosclerotic/blood , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/etiology
8.
J Vasc Res ; 56(6): 308-319, 2019.
Article En | MEDLINE | ID: mdl-31437850

Tumor necrosis factor (TNF) receptor-associated factors (TRAFs) are cytoplasmic adaptor proteins of the TNF/interleukin (IL)-1/Toll-like receptor superfamily. Ligands of this family such as TNFα, CD40L, and IL-1ß promote chronic inflammatory processes such as atherosclerosis and restenosis, the latter being a common adverse reaction after vascular interventions. We previously reported overexpression of TRAF5 in murine and human atheromata and TRAF5-dependent proinflammatory functions in vitro. However, the role of TRAF5 in restenosis remains unsettled. To evaluate whether TRAF5 affects neointima formation, TRAF5-/-LDLR-/- and TRAF5+/+LDLR-/- mice consuming a high cholesterol diet (HCD) received wire-induced injury of the carotid artery. After 28 days, TRAF5-deficient mice showed a 45% decrease in neointimal area formation compared with TRAF5-compentent mice. Furthermore, neointimal vascular smooth muscle cells (vSMC) and macrophages decreased whereas collagen increased in TRAF5-deficient mice. Mechanistically, the latter expressed lower transcript levels of the matrix metalloproteinases 2 and 9, both instrumental in extracellular matrix degradation and vSMC mobilization. Additionally, TRAF5-specific siRNA interference rendered murine vSMC less proliferative upon CD40L stimulation. In accordance with these findings, fewer vSMC isolated from TRAF5-deficient aortas were in a proliferative state as assessed by Ki67 and cyclin B1 expression. In conclusion, TRAF5 deficiency mitigates neointima formation in mice, likely through a TRAF5-dependent decrease in vSMC proliferation.


Carotid Artery Diseases/metabolism , Cell Proliferation , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neointima , TNF Receptor-Associated Factor 5/metabolism , Animals , CD40 Antigens/metabolism , Carotid Arteries/metabolism , Carotid Arteries/pathology , Carotid Artery Diseases/genetics , Carotid Artery Diseases/pathology , Cholesterol, Dietary , Disease Models, Animal , Macrophages/metabolism , Macrophages/pathology , Male , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Plaque, Atherosclerotic , Receptors, LDL/genetics , Receptors, LDL/metabolism , Signal Transduction , TNF Receptor-Associated Factor 5/deficiency , TNF Receptor-Associated Factor 5/genetics
9.
Circ Res ; 122(12): 1675-1688, 2018 06 08.
Article En | MEDLINE | ID: mdl-29545366

RATIONALE: Atherosclerosis is a chronic inflammatory disease that is driven by the interplay of pro- and anti-inflammatory leukocytes in the aorta. Yet, the phenotypic and transcriptional diversity of aortic leukocytes is poorly understood. OBJECTIVE: We characterized leukocytes from healthy and atherosclerotic mouse aortas in-depth by single-cell RNA-sequencing and mass cytometry (cytometry by time of flight) to define an atlas of the immune cell landscape in atherosclerosis. METHODS AND RESULTS: Using single-cell RNA-sequencing of aortic leukocytes from chow diet- and Western diet-fed Apoe-/- and Ldlr-/- mice, we detected 11 principal leukocyte clusters with distinct phenotypic and spatial characteristics while the cellular repertoire in healthy aortas was less diverse. Gene set enrichment analysis on the single-cell level established that multiple pathways, such as for lipid metabolism, proliferation, and cytokine secretion, were confined to particular leukocyte clusters. Leukocyte populations were differentially regulated in atherosclerotic Apoe-/- and Ldlr-/- mice. We confirmed the phenotypic diversity of these clusters with a novel mass cytometry 35-marker panel with metal-labeled antibodies and conventional flow cytometry. Cell populations retrieved by these protein-based approaches were highly correlated to transcriptionally defined clusters. In an integrated screening strategy of single-cell RNA-sequencing, mass cytometry, and fluorescence-activated cell sorting, we detected 3 principal B-cell subsets with alterations in surface markers, functional pathways, and in vitro cytokine secretion. Leukocyte cluster gene signatures revealed leukocyte frequencies in 126 human plaques by a genetic deconvolution strategy. This approach revealed that human carotid plaques and microdissected mouse plaques were mostly populated by macrophages, T-cells, and monocytes. In addition, the frequency of genetically defined leukocyte populations in carotid plaques predicted cardiovascular events in patients. CONCLUSIONS: The definition of leukocyte diversity by high-dimensional analyses enables a fine-grained analysis of aortic leukocyte subsets, reveals new immunologic mechanisms and cell-type-specific pathways, and establishes a functional relevance for lesional leukocytes in human atherosclerosis.


Aortic Diseases/pathology , Atherosclerosis/pathology , Leukocytes/pathology , Sequence Analysis, RNA/methods , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , B-Lymphocytes/pathology , Flow Cytometry/methods , Humans , Leukocytes/metabolism , Macrophages/pathology , Medical Illustration , Mice , Monocytes/pathology , Phenotype , Receptors, LDL/deficiency , Receptors, LDL/genetics , Single-Cell Analysis/methods , T-Lymphocytes/pathology , Transcriptome
10.
Nat Commun ; 9(1): 525, 2018 02 06.
Article En | MEDLINE | ID: mdl-29410422

Integrin-based therapeutics have garnered considerable interest in the medical treatment of inflammation. Integrins mediate the fast recruitment of monocytes and neutrophils to the site of inflammation, but are also required for host defense, limiting their therapeutic use. Here, we report a novel monoclonal antibody, anti-M7, that specifically blocks the interaction of the integrin Mac-1 with its pro-inflammatory ligand CD40L, while not interfering with alternative ligands. Anti-M7 selectively reduces leukocyte recruitment in vitro and in vivo. In contrast, conventional anti-Mac-1 therapy is not specific and blocks a broad repertoire of integrin functionality, inhibits phagocytosis, promotes apoptosis, and fuels a cytokine storm in vivo. Whereas conventional anti-integrin therapy potentiates bacterial sepsis, bacteremia, and mortality, a ligand-specific intervention with anti-M7 is protective. These findings deepen our understanding of ligand-specific integrin functions and open a path for a new field of ligand-targeted anti-integrin therapy to prevent inflammatory conditions.


Antibodies, Monoclonal/pharmacology , Inflammation/drug therapy , Macrophage-1 Antigen/metabolism , Molecular Targeted Therapy/methods , Animals , Binding Sites , CD40 Ligand/metabolism , Host-Pathogen Interactions/drug effects , Humans , Inflammation/pathology , Leukocytes/drug effects , Leukocytes/pathology , Male , Mice, Inbred C57BL , Neutrophils/drug effects , Sepsis/drug therapy
11.
Circ Res ; 122(5): 693-700, 2018 03 02.
Article En | MEDLINE | ID: mdl-29358227

RATIONALE: The coincidence of inflammation and metabolic derangements in obese adipose tissue has sparked the concept of met-inflammation. Previous observations, however, suggest that inflammatory pathways may not ultimately cause dysmetabolism. OBJECTIVE: We have revisited the relationship between inflammation and metabolism by testing the role of TRAF (tumor necrosis receptor-associated factor)-1, an inhibitory adapter of inflammatory signaling of TNF (tumor necrosis factor)-α, IL (interleukin)-1ß, and TLRs (toll-like receptors). METHODS AND RESULTS: Mice deficient for TRAF-1, which is expressed in obese adipocytes and adipose tissue lymphocytes, caused an expected hyperinflammatory phenotype in adipose tissue with enhanced adipokine and chemokine expression, increased leukocyte accumulation, and potentiated proinflammatory signaling in macrophages and adipocytes in a mouse model of diet-induced obesity. Unexpectedly, TRAF-1-/- mice were protected from metabolic derangements and adipocyte growth, failed to gain weight, and showed improved insulin resistance-an effect caused by increased lipid breakdown in adipocytes and UCP (uncoupling protein)-1-enabled thermogenesis. TRAF-1-dependent catabolic and proinflammatory cues were synergistically driven by ß3-adrenergic and inflammatory signaling and required the presence of both TRAF-1-deficient adipocytes and macrophages. In human obesity, TRAF-1-dependent genes were upregulated. CONCLUSIONS: Enhancing TRAF-1-dependent inflammatory pathways in a gain-of-function approach protected from metabolic derangements in diet-induced obesity. These findings identify TRAF-1 as a regulator of dysmetabolism in mice and humans and question the pathogenic role of chronic inflammation in metabolism.


Lipid Metabolism , Obesity/genetics , TNF Receptor-Associated Factor 1/genetics , Adipocytes/metabolism , Animals , Cells, Cultured , Diet, High-Fat/adverse effects , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , Thermogenesis , Uncoupling Protein 1/metabolism
12.
Thromb Haemost ; 117(2): 325-338, 2017 01 26.
Article En | MEDLINE | ID: mdl-27853810

Cell accumulation is a prerequisite for adipose tissue inflammation. The leukocyte integrin Mac-1 (CD11b/CD18, αMß2) is a classic adhesion receptor critically regulating inflammatory cell recruitment. Here, we tested the hypothesis that a genetic deficiency and a therapeutic modulation of Mac-1 regulate adipose tissue inflammation in a mouse model of diet-induced obesity (DIO). C57Bl6/J mice genetically deficient (Mac-1-/-) or competent for Mac-1 (WT) consumed a high fat diet for 20 weeks. Surprisingly, Mac-1-/- mice presented with increased diet-induced weight gain, decreased insulin sensitivity in skeletal muscle and in the liver in insulin-clamps, insulin secretion deficiency and elevated glucose levels in fasting animals, and dyslipidaemia. Unexpectedly, accumulation of adipose tissue macrophages (ATMs) was unaffected, while gene expression indicated less inflamed adipose tissue and macrophages in Mac-1-/- mice. In contrast, inflammatory gene expression at distant locations, such as in skeletal muscle, was not changed. Treatment of ATMs with an agonistic anti-Mac-1 antibody, M1/70, induced pro-inflammatory genes in cell culture. In vivo, treatment with M1/70 induced a hyper-inflammatory phenotype with increased expression of IL-6 and MCP-1, whereas accumulation of ATMs did not change. Finally, inhibition of Mac-1's adhesive interaction to CD40L by the peptide inhibitor cM7 did not affect myeloid cell accumulation in adipose tissue. We present the surprising finding that adhesive properties of the leukocyte integrin Mac-1 are not required for macrophage accumulation in adipose tissue. Instead, Mac-1 modulates inflammatory gene expression in macrophages. These findings question the net effect of integrin blockade in cardio-metabolic disease.


CD11b Antigen/metabolism , CD18 Antigens/metabolism , Chemotaxis , Diet/adverse effects , Inflammation/metabolism , Intra-Abdominal Fat/metabolism , Leukocytes/metabolism , Macrophage-1 Antigen/metabolism , Macrophages/metabolism , Obesity/metabolism , Signal Transduction , Animals , Antibodies, Monoclonal/pharmacology , CD11b Antigen/deficiency , CD11b Antigen/genetics , CD18 Antigens/deficiency , CD18 Antigens/genetics , Cell Adhesion , Cells, Cultured , Chemotaxis/drug effects , Cytokines/metabolism , Disease Models, Animal , Genotype , Hyperlipidemias/genetics , Hyperlipidemias/metabolism , Inflammation/genetics , Inflammation/pathology , Insulin Resistance , Intra-Abdominal Fat/drug effects , Intra-Abdominal Fat/pathology , Leukocytes/drug effects , Leukocytes/pathology , Macrophage-1 Antigen/genetics , Macrophages/drug effects , Macrophages/pathology , Mice, Inbred C57BL , Mice, Knockout , Obesity/genetics , Obesity/pathology , Phenotype , Signal Transduction/drug effects , Weight Gain
13.
Basic Res Cardiol ; 111(2): 20, 2016 Mar.
Article En | MEDLINE | ID: mdl-26891724

Macrophages in the arterial intima sustain chronic inflammation during atherogenesis. Under hypercholesterolemic conditions murine Ly6C(high) monocytes surge in the blood and spleen, infiltrate nascent atherosclerotic plaques, and differentiate into macrophages that proliferate locally as disease progresses. Spleen tyrosine kinase (SYK) may participate in downstream signaling of various receptors that mediate these processes. We tested the effect of the SYK inhibitor fostamatinib on hypercholesterolemia-associated myelopoiesis and plaque formation in Apoe(-/-) mice during early and established atherosclerosis. Mice consuming a high cholesterol diet supplemented with fostamatinib for 8 weeks developed less atherosclerosis. Histologic and flow cytometric analysis of aortic tissue showed that fostamatinib reduced the content of Ly6C(high) monocytes and macrophages. SYK inhibition limited Ly6C(high) monocytosis through interference with GM-CSF/IL-3 stimulated myelopoiesis, attenuated cell adhesion to the intimal surface, and blocked M-CSF stimulated monocyte to macrophage differentiation. In Apoe(-/-) mice with established atherosclerosis, however, fostamatinib treatment did not limit macrophage accumulation or lesion progression despite a significant reduction in blood monocyte counts, as lesional macrophages continued to proliferate. Thus, inhibition of hypercholesterolemia-associated monocytosis, monocyte infiltration, and differentiation by SYK antagonism attenuates early atherogenesis but not established disease when local macrophage proliferation dominates lesion progression.


Atherosclerosis/drug therapy , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Monocytes/drug effects , Myelopoiesis/drug effects , Oxazines/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyridines/therapeutic use , Aminopyridines , Animals , Atherosclerosis/immunology , Atherosclerosis/prevention & control , Cell Adhesion/drug effects , Cells, Cultured , Disease Progression , Drug Evaluation, Preclinical , Female , Macrophages/drug effects , Mice , Morpholines , Oxazines/pharmacology , Pyridines/pharmacology , Pyrimidines , Random Allocation , Syk Kinase
14.
Thromb Res ; 138: 63-68, 2016 Feb.
Article En | MEDLINE | ID: mdl-26610745

BACKGROUND/OBJECTIVES: Novel (or non-vitamin K antagonist) oral anti-coagulants (NOACs) are antagonists of coagulation factors (F) Xa (rivaroxaban) or IIa (dabigatran), and their non-inferiority compared with vitamin K antagonists has been demonstrated in patients with non-valvular atrial fibrillation. However, it is still not fully understood if and how dabigatran and rivaroxaban impact platelet function. This observational study aimed to assess platelet function in patients receiving dabigatran or rivaroxaban. METHODS/RESULTS: This was a single centre, observational study quantifying platelet aggregation in 90 patients treated with NOACs by multiple electrode aggregometry. The thrombin receptor activating peptide (TRAP)-induced platelet aggregation was significantly higher in 35 patients receiving dabigatran (d) compared with control (c) patients (d 108±31 vs. c 85±30arbitrary units [AU]∗min, p<0.001). Patients receiving rivaroxaban (r) showed no differences compared with the control group (r 88±32 vs. c 85±30AU∗min, p=0.335). In intraindividual time courses of 16 patients, a significantly higher aggregation was found after the administration of dabigatran (before vs. after; 83±29 vs. 100±31AU∗min, p=0.009). CONCLUSION: In this observational study, the TRAP-induced platelet aggregation was enhanced in cardiovascular patients receiving dabigatran. This might be explained by a change in the expression profile of thrombin receptors on the surface of platelets. Rivaroxaban had no influence on platelet aggregation.


Antithrombins/therapeutic use , Atrial Fibrillation/drug therapy , Blood Platelets/drug effects , Dabigatran/therapeutic use , Platelet Aggregation/drug effects , Receptors, Thrombin/metabolism , Rivaroxaban/therapeutic use , Aged , Aged, 80 and over , Antithrombins/pharmacology , Dabigatran/pharmacology , Female , Humans , Male , Middle Aged , Pulmonary Embolism/drug therapy , Rivaroxaban/pharmacology , Venous Thrombosis/drug therapy
...