Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gels ; 9(8)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37623093

RESUMEN

Pin site infections arise from the use of percutaneous pinning techniques (as seen in skeletal traction, percutaneous fracture pinning, and external fixation for fracture stabilization or complex deformity reconstruction). These sites are niduses for infection because the skin barrier is disrupted, allowing for bacteria to enter a previously privileged area. After external fixation, the rate of pin site infections can reach up to 100%. Following pin site infection, the pin may loosen, causing increased pain (increasing narcotic usage) and decreasing the fixation of the fracture or deformity correction construct. More serious complications include osteomyelitis and deep tissue infections. Due to the morbidity and costs associated with its sequelae, strategies to reduce pin site infections are vital. Current strategies for preventing implant-associated infections include coatings with antibiotics, antimicrobial polymers and peptides, silver, and other antiseptics like chlorhexidine and silver-sulfadiazine. Problems facing the development of antimicrobial coatings on orthopedic implants and, specifically, on pins known as Kirschner wires (or K-wires) include poor adhesion of the drug-eluting layer, which is easily removed by shear forces during the implantation. Development of highly adhesive drug-eluting coatings could therefore lead to improved antimicrobial efficacy of these devices and ultimately reduce the burden of pin site infections. In response to this need, we developed two types of gel coatings: synthetic poly-glycidyl methacrylate-based and natural-chitosan-based. Upon drying, these gel coatings showed strong adhesion to pins and remained undamaged after the application of strong shear forces. We also demonstrated that antibiotics can be incorporated into these gels, and a K-wire with such a coating retained antimicrobial efficacy after drilling into and removal from a bone. Such a coating could be invaluable for K-wires and other orthopedic implants that experience strong shear forces during their implantation.

2.
ACS Appl Mater Interfaces ; 15(33): 40042-40053, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37552858

RESUMEN

We report on enhancing the mechanical and structural characteristics of polypropylene (PP) three-dimensional (3D)-printed structures fabricated via fused filament fabrication (FFF) by employing composite PP-based filament with subsequent microwave (MWV) treatment. The composite filament contained a minute (0.9 vol %) fraction of silicon carbide whiskers (SiCWs) and was prepared via melt blending of PP pellets with SiCW using an extruder. The surface of the whiskers was modified with trimethoxy(octadecyl) silane to improve compatibility between the polar SiCW and nonpolar PP matrix. We employed SiCWs in composite filament because of the whiskers' high thermal conductivity and ability to generate heat locally under MWV irradiation. Indeed, we were able to conduct the heating of printed parts by MWV without sacrificing the structural integrity and improving the overall adhesion between the 3D-printed polymer layers. Our modeling captures an extent of heating upon MWV irradiation observed in our experiments. In general, utilization of the composite PP/SiCW filament significantly improved the printed parts' mechanical characteristics and sintering level compared to those made from pure PP filament. Specifically, after the MWV treatment, the adjusted (for density) storage modulus of the PP/SiCW material was just ∼20% lower than that for the PP sample obtained by conventional compression molding. After the MWV irradiation, Young's modulus, yield stress, and toughness of the printed structures were increased by ∼65, 53, and 55%, respectively. We attribute the improvement of mechanical properties via MWV treatment to enhancing the entanglement level at the weld.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA