Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
2.
Neuroscience ; 545: 148-157, 2024 May 03.
Article En | MEDLINE | ID: mdl-38513764

In this study, the electrophysiological and biochemical consequences of repeated exposure to morphine in male rats on glutamatergic synaptic transmission, synaptic plasticity, the expression of GABA receptors and glutamate receptors at the temporoammonic-CA1 synapse along the longitudinal axis of the hippocampus (dorsal, intermediate, ventral, DH, IH, VH, respectively) were investigated. Slice electrophysiological methods, qRT-PCR, and western blotting techniques were used to characterize synaptic plasticity properties. We showed that repeated morphine exposure (RME) reduced excitatory synaptic transmission and ability for long-term potentiation (LTP) in the VH as well as eliminated the dorsoventral difference in paired-pulse responses. A decreased expression of NR2B subunit in the VH and an increased expression GABAA receptor of α1 and α5 subunits in the DH were observed following RME. Furthermore, RME did not affect the expression of NR2A, AMPA receptor subunits, and γ2GABAA and GABAB receptors in either segment of the hippocampus. In sum, the impact of morphine may differ depending on the region of the hippocampus studied. A distinct change in the short- and long-term synaptic plasticity along the hippocampus long axis due to repeated morphine exposure, partially mediated by a change in the expression profile of glutamatergic receptor subunits. These findings can be useful in further understanding the cellular mechanism underlying deficits in information storage and, more generally, cognitive processes resulting from chronic opioid abuse.


Morphine , Neuronal Plasticity , Rats, Sprague-Dawley , Animals , Male , Morphine/pharmacology , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , Rats , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Narcotics/pharmacology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Receptors, GABA-A/metabolism , Receptors, GABA-A/drug effects , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Receptors, GABA/metabolism , Receptors, GABA/drug effects
3.
J Neurosci Res ; 102(1): e25291, 2024 01.
Article En | MEDLINE | ID: mdl-38284841

In this study, the connection between cognitive behaviors and the adult rodent hippocampus was investigated. Recording field potentials at performant pathway (PP)-hippocampal dentate gyrus (DG) synapses in transverse slices from the dorsal (d), intermediate (i), and ventral (v) hippocampus showed differences in paired-pulse responses and long-term potentiation in rats. The Barnes maze (BM) and passive avoidance (PA) tests indicated a decrease in escape latency and step-through latency in both rats and mice over training days. A decrease in the use of random or sequential strategy while an increase in the use of direct strategy to search for an escape box occurred in both groups. Evaluation of the levels of neurogenesis markers (Ki67 and BrdU/NeuN) by immunofluorescence assay in the dDG, iDG, and vDG revealed a long-axis disparity in the hippocampal dentate baseline cell proliferation and exposure to the BM and PA task changed the profile of baseline cell proliferation along the DG in both rats and mice. Also, these learning experiences changed the profile of BrdU+ /NeuN+ cells along the DG of rats. Quantitation of hippocampal BDNF protein levels using ELISA exhibited no changes in BDNF levels due to learning experiences in rats. We demonstrate that PP-DG synaptic efficacy and neurogenesis are organized along a gradient. Avoidance and escape conditioning themselves are sufficient to change and calibrate adult neurogenesis along the hippocampal long axis in rodents. Further research will be required to determine the precise mechanisms underlying the role of experience-derived neuroplasticity in cognitive function and decline.


Brain-Derived Neurotrophic Factor , Rodentia , Male , Rats , Mice , Animals , Bromodeoxyuridine , Hippocampus , Neurogenesis
4.
Hippocampus ; 33(1): 47-62, 2023 01.
Article En | MEDLINE | ID: mdl-36514833

We aimed to study how morphine affects synaptic transmission in the dentate gyrus and CA1 regions along the hippocampal long axis. For this, recording and measuring of field excitatory postsynaptic potentials (fEPSPs) were utilized to test the effects of repeated morphine exposure on paired-pulse evoked responses and long-term potentiation (LTP) at Schaffer collateral-CA1 (Sch-CA1), temporoammonic-CA1 (TA-CA1) and perforant pathway-dentate gyrus (PP-DG) synapses in transverse slices from the dorsal (DH), intermediate (IH), and ventral (VH) hippocampus in adult male rats. After repeated morphine exposure, the expression of opioid receptors and the α1 and α5 GABAA subunits were also examined. We found that repeated morphine exposure blunt the difference between the DH and the VH in their basal levels of synaptic transmission at Sch-CA1 synapses that were seen in the control groups. Significant paired-pulse facilitation of excitatory synaptic transmission was observed at Sch-CA1 synapses in slices taken from all three hippocampal segments as well as at PP-DG synapses in slices taken from the VH segment in the morphine-treated groups as compared to the control groups. Interestingly, significant paired-pulse inhibition of excitatory synaptic transmission was observed at TA-CA1 synapses in the DH slices from the morphine-treated group as compared to the control group. While primed-burst stimulation (a protocol reflecting normal neuronal firing) induced a robust LTP in hippocampal subfields in all control groups, resulting in a decaying LTP at TA-CA1 synapses in the VH slices and at PP-DG synapses in both the IH and VH slices taken from the morphine-treated rats. In the DH of morphine-treated rats, we found increased levels of the mRNAs encoding the α1 and α5 GABAA subunits as compared to the control group. Taken together, these findings suggest the potential mechanisms through which repeated morphine exposure causes differential changes in circuit excitability and synaptic plasticity in the dentate gyrus and CA1 regions along the hippocampal long axis.


Morphine , Perforant Pathway , Male , Rats , Animals , Morphine/pharmacology , Schaffer Collaterals , Rats, Wistar , Hippocampus/physiology , Neuronal Plasticity , Long-Term Potentiation/physiology , Synapses/physiology , Dentate Gyrus , gamma-Aminobutyric Acid/metabolism
5.
EXCLI J ; 15: 797-806, 2016.
Article En | MEDLINE | ID: mdl-28337110

Achillea eriophora (Asteraceae) is a medicinal plant commonly used in Iran. This study was performed to determine the cardiovascular effects of hydroethanolic extract of A. eriophora (HEAE) and the underlying mechanisms in anaesthetized rats. The acute effects of intravenous (i.v.) administration of different doses of HEAE (40, 50, 60, 80 mg/kg), and its probable interaction with cholinergic and nitrergic systems were investigated in the presence of ACh and NOS blocker (L-NAME) as well as ethanol (HEAE solvent in sham group). Intravenous administration of different doses of HEAE induced hypotension. HEAE (60 mg/kg) significantly reduced mean arterial blood pressure (MAP), systolic arterial blood pressure (SBP) and diastolic arterial blood pressure (DBP) compared to control rats that treated with ethanol only, but no change in heart rate (HR) was seen in both groups. The results showed significant decrease in MAP, SBP, DBP and increase of HR in the presence of HEAE plus ACh (10 µg/kg) compared to when ACh was injected alone. Finally i.v. administration of HEAE, significantly reduced MAP and DBP in L-NAME (5 mg/kg) treated animals, while bradycardic responses to L-NAME were not significantly changed by HEAE. It can be concluded that Achillea eriophora induced hypotensive effect via lowering total peripheral resistance and cardiac output that may be synergist with cholinergic and independent of nitrergic system.

...