Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Pharmacol ; 960: 176114, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37863412

RESUMEN

In patients with non-small cell lung cancer (NSCLC), the standard therapy consists of selective tyrosine kinase inhibitors that target epidermal growth factor receptors (EGFR). Nonetheless, their clinical utility is primarily limited by the development of resistance to drugs. HDAC inhibitors have been shown in studies to reduce the level of EGFR that is expressed and downregulate the EGFR-induced phosphorylation of AKT and ERK. Therefore, dual inhibitors of EGFR and HDAC provide a potential approach as combination treatment synergistically inhibited the growth of NSCLC. Herein, we examined the EGFR inhibition effect of twenty compounds which designed and synthesized by us previously. Among them, compounds 12c and 12d exhibited powerful antiproliferative activity against the NCI-H1975 cell line with IC50 values of 0.48 ± 0.07 and 0.35 ± 0.02 µM, correspondingly. In cell-free kinase assays, both 12c and 12d demonstrated target-specific EGFR inhibition against wild type (EGFRwt). Furthermore, the expression of EGFR and phosphorylation of the EGF-induced pathways were significantly suppressed under the treatment of 12c and 12d. Besides, both histones H3 and H4 exhibited increased levels of acetylation following 12c and 12d treatment. The animal experiments shown that 12d could prevent the growth of tumor, inhibited the expression of EGFR and the phosphorylation levels of p70 S6K, AKT and p38 MAPK in vivo, and did not cause organ damage to the mice during the experiment. Overall, the results illustrated that compound 12c and 12d could serve as effective EGFR and HDAC dual inhibitors in NSCLC cells. Our work offers an alternative strategy for NSCLC therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Receptores ErbB/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Resistencia a Antineoplásicos , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proliferación Celular
2.
Br J Cancer ; 129(12): 1915-1929, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37884683

RESUMEN

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is a highly lethal malignancy with few therapeutic options. Cyclin­dependent kinase 9 (CDK9), a potential therapeutic target of many cancers, has been recently observed to be upregulated in ccRCC patients. Therefore, we aimed to investigate the therapeutic potential of CDK9 in ccRCC and develop a novel CDK9 inhibitor with low toxicity for ccRCC treatment. METHODS: The expression of CDK9 in ccRCC was checked using the online database and tissue microarray analysis. shRNA-mediated CDK9 knockdown and CDK inhibitor were applied to evaluate the effect of CDK9 on ccRCC. Medicinal chemistry methods were used to develop a new CDK9 inhibitor with drugability. RNA-seq and ChIP-seq experiments were conducted to explore the mechanism of action. MTS, western blotting, and colony formation assays were performed to evaluate the anti-ccRCC effects of CDK9 knockdown and inhibition in vitro. The in vivo anti-tumour efficacy was evaluated in a xenograft model. RESULTS: CDK9 is overexpressed and associated with poor survival in ccRCC. Knockdown or inhibition of CDK9 significantly suppressed ccRCC cells. XPW1 was identified as a new potent and selective CDK9 inhibitor with excellent anti-ccRCC activity and low toxicity. In mechanism, XPW1 transcriptionally inhibited DNA repair programmes in ccRCC cells, resulting in an excellent anti-tumour effect. CDK9 and BRD4 were two highly correlated transcriptional regulators in ccRCC patients, and the BRD4 inhibitor JQ1 enhanced XPW1's anti-ccRCC effects in vitro and in vivo. CONCLUSIONS: This work provides valuable insights into the therapeutic potential of CDK9 in ccRCC. The CDK9 inhibitor XPW1 would be a novel therapeutic agent for targeting ccRCC, alone or in rational combinations.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Proteínas que Contienen Bromodominio/antagonistas & inhibidores , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/patología , Proteínas Nucleares/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Front Pharmacol ; 14: 1200110, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37405051

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide with inflammation and injury in airway epithelial cells. However, few treatment options effectively reduce severity. We previously found that Nur77 is involved in lipopolysaccharide-induced inflammation and injury of lung tissue. Here, we established an in vitro model of COPD-related inflammation and injury in 16-HBE cells induced by cigarette smoke extract (CSE). In these cells, Nur77 expression and localization to the endoplasmic reticulum (ER) increased following CSE treatment, as did ER stress marker (BIP, ATF4, CHOP) expression, inflammatory cytokine expression, and apoptosis. The flavonoid derivative, named B6, which was shown to be a modulator of Nur77 in previous screen, molecular dynamics simulation revealed that B6 binds strongly to Nur77 through hydrogen bonding and hydrophobic interactions. Treating CSE-stimulated 16-HBE cells with B6 resulted in a reduction of both inflammatory cytokine expression and secretion, as well as attenuated apoptosis. Furthermore, B6 treatment resulted in a decrease in Nur77 expression and translocation to the ER, which was accompanied by a concentration-dependent reduction in the expression of ER stress markers. Meanwhile, B6 played a similar role in CSE-treated BEAS-2B cells. These combined effects suggest that B6 could inhibit inflammation and apoptosis in airway epithelial cells after cigarette smoke stimulation, and support its further development as a candidate intervention for treating COPD-related airway inflammation.

4.
Bioorg Chem ; 129: 106119, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36116323

RESUMEN

JMJD6 is a member of the JmjC domain-containing family and has been identified as a promising therapeutic target for treating estrogen-induced and triple-negative breast cancer. To develop novel anti-breast cancer agents, we synthesized a class of N-(1-(6-(substituted phenyl)-pyridazine-3-yl)-piperidine-3-yl)-amine derivatives as potential JMJD6 inhibitors. Among them, the anti-cancer compound A29 was an excellent JMJD6 binder (KD = 0.75 ± 0.08 µM). It could upregulate the mRNA and protein levels of p53 and its downstream effectors p21 and PUMA by inhibiting JMJD6. Besides, A29 displayed potent anti-proliferative activities against tested breast cancer cells by the induction of cell apoptosis and cell cycle arrest. Significantly, A29 also promoted a remarkable reduction in tumor growth, with a TGI value of 66.6% (50 mg/kg, i.p.). Taken together, our findings suggest that A29 is a potent JMJD6 inhibitor bearing a new scaffold acting as a promising drug candidate for the treatment of breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Histona Demetilasas con Dominio de Jumonji/farmacología , Puntos de Control del Ciclo Celular , Neoplasias de la Mama Triple Negativas/patología , Apoptosis , Piperidinas/farmacología , Antineoplásicos/farmacología , Aminas/farmacología , Línea Celular Tumoral , Proliferación Celular
5.
Bioorg Chem ; 120: 105645, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35121551

RESUMEN

In continuing our study on discovering new Nur77-targeting anti-inflammatory agents with natural skeletons, we combined adamantyl group and hydroxamic acid moiety with flavonoid nucleus, synthesized three series of flavonoid derivatives with a similar structure like CD437, and evaluated their activities against LPS-induced inflammation. Compound B7 was found to be an excellent Nur77 binder (Kd = 3.55 × 10-7 M) and a potent inhibitor of inflammation, which significantly decreased the production of cytokines in vitro, such as NO, IL-6, IL-1ß, and TNF-α, at concentrations of 1.25, 2.5, and 5 µM. Mechanistically, B7 modulated the colocalization of Nur77 at mitochondria and inhibited the lipopolysaccharides (LPS)-induced inflammation via the blockade of NF-κB activation in a Nur77-dependent manner. Additionally, B7 showed in vivo anti-inflammatory activity in the LPS-induced mice model of acute lung injury (ALI). These data suggest that the Nur77-targeting flavonoid derivatives can be particularly useful for further pharmaceutical development for the treatment of inflammatory diseases such as ALI.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Antiinflamatorios/efectos adversos , Citocinas , Flavonoides/farmacología , Flavonoides/uso terapéutico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Lipopolisacáridos/efectos adversos , Ratones , FN-kappa B
6.
J Nanobiotechnology ; 19(1): 350, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34717646

RESUMEN

BACKGROUND: Nanoscale drug delivery systems have emerged as broadly applicable approach for chemo-photothermal therapy. However, these nanoscale drug delivery systems suffer from carrier-induced toxicity, uncontrolled drug release and low drug carrying capacity issues. Thus, to develop carrier-free nanoparticles self-assembled from amphiphilic drug molecules, containing photothermal agent and anticancer drug, are very attractive. RESULTS: In this study, we conjugated camptothecin (CPT) with a photothermal agent new indocyanine green (IR820) via a redox-responsive disulfide linker. The resulting amphiphilic drug-drug conjugate (IR820-SS-CPT) can self-assemble into nanoparticles (IR820-SS-CPT NPs) in aqueous solution, thus remarkably improving the membrane permeability of IR820 and the aqueous solubility of CPT. The disulfide bond in the IR820-SS-CPT NPs could be cleaved in GSH rich tumor microenvironment, leading to the on demand release of the conjugated drug. Importantly, the IR820-SS-CPT NPs displayed an extremely high therapeutic agent loading efficiency (approaching 100%). Besides, in vitro experimental results indicated that IR820-SS-CPT NPs displayed remarkable tumor cell killing efficiency. Especially, the IR820-SS-CPT NPs exhibited excellent anti-tumor effects in vivo. Both in vitro and in vivo experiments were conducted, which have indicated that the design of IR820-SS-CPT NPs can provide an efficient nanotherapeutics for chemo-photothermal therapy. CONCLUSION: A novel activatable amphiphilic small molecular prodrug IR820-SS-CPT has been developed in this study, which integrated multiple advantages of GSH-triggered drug release, high therapeutic agent content, and combined chemo-photothermal therapy into one drug delivery system.


Asunto(s)
Camptotecina/administración & dosificación , Camptotecina/química , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Terapia Fototérmica/métodos , Profármacos/química , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Liberación de Fármacos , Femenino , Humanos , Verde de Indocianina , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fototerapia , Solubilidad
7.
J Enzyme Inhib Med Chem ; 36(1): 1436-1453, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34229558

RESUMEN

This study describes the synthesis and vacuole-inducing activity of 5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1H-indole-2-carbohydrazide derivatives, including five potent derivatives 12c, 12 g, 12i, 12n, and 12A that exhibit excellent vacuole-inducing activity. Remarkably, 12A effectively induces methuosis in tested cancer cells but not human normal cells. In addition, 12A exhibits high pan-cytotoxicity against different cancer cell lines but is hardly toxic to normal cells. It is found that the 12A-induced vacuoles are derived from macropinosomes but not autophagosomes. The 12A-induced cytoplasmic vacuoles may originate from the endoplasmic reticulum (ER) and be accompanied by ER stress. The MAPK/JNK signalling pathway is involved in the 12A-induced methuotic cell death. Moreover, 12A exhibits significant inhibition of tumour growth in the MDA-MB-231 xenograft mouse model. The excellent potency and selectivity of 12A prompt us to select it as a good lead compound for further development of methuosis inducers and investigation of the molecular and cellular mechanisms underlying methuosis.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Hidrazinas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Humanos , Hidrazinas/síntesis química , Hidrazinas/química , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
8.
Bioorg Chem ; 113: 104961, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34023650

RESUMEN

In the present study, a new series of chalcone adamantly arotinoids (chalcone AdArs) derived from RAR antagonist MX781, are synthesized, characterized, and evaluated for the biological activities in vitro. The studies of antiproliferative activity and RXRα-binding affinity of target compounds result in the discovery of a lead candidate (WA15), which is a good RXRα binder (Kd = 2.89 × 10-6 M) with potent antiproliferative activity against human cancer cell lines (IC50 ≈ 10 µM) and low toxic to normal LO2 and MRC-5 cells (IC50 > 50 µM). Different from MX781, WA15 eliminates RARα antagonist activity but inhibits 9-cis-RA-induced RXRα transactivation activity in a dose-dependent manner. Compound WA15 is found to be a good apoptosis inducer in various cancer cells and promotes cell apoptosis in an RXRα-independent manner. Besides, WA15 shows the induction of proteasome-dependent RXRα degradation which might enhance the WA15-induced apoptosis. Finally, the immunoblotting indicates that WA15 can inhibit the TNFα-induced IKK activation and IκBα degradation, suggesting that the anticancer activity of WA15 might be related to the inhibition of IKK/NF-κB signal pathway.


Asunto(s)
Antineoplásicos/farmacología , Chalonas/farmacología , Descubrimiento de Drogas , Receptor alfa X Retinoide/antagonistas & inhibidores , Retinoides/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Chalonas/síntesis química , Chalonas/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Receptor alfa X Retinoide/metabolismo , Retinoides/síntesis química , Retinoides/química , Relación Estructura-Actividad
9.
Bioorg Chem ; 105: 104456, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33217634

RESUMEN

In this work, three series of ω-3 polyunsaturated fatty acid-alkanolamine derivatives (PUFA-AAs) were synthesized, characterized and their anti-inflammatory activity in vivo was evaluated. Compounds 4a, 4f, and 4k exhibited marked anti-inflammatory activity in LPS-stimulated RAW 264.7 cells. The most promising compound 4k dose-dependently suppressed the cytokines with IC50 values in the low micromolar range. Further, 4k exhibited potential in vitro Nur77-binding affinity (Kd = 6.99 × 10-6 M) which is consistent with the result of docking studies. Next, the anti-inflammatory mechanism of 4k was found to be through NF-κB signal pathway in a Nur77-dependent manner. Moreover, we also observed 4k significantly inhibited LPS-induced expression of cytokines (IL-6, TNF-α, and IL-1ß) through suppressing NF-κB activation and attenuated LPS-induced inflammation in mouse acute lung injury (ALI) model. In conclusion, the study strongly suggests that the PUFA-AA derivatives can be particularly as new Nur77 mediators for further treatment in inflammatory diseases.


Asunto(s)
Aminas/química , Antiinflamatorios/síntesis química , Ácidos Grasos Insaturados/síntesis química , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Animales , Antiinflamatorios/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Diseño de Fármacos , Activación Enzimática/efectos de los fármacos , Ácidos Grasos Insaturados/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Células RAW 264.7 , Transducción de Señal
10.
Bioorg Chem ; 102: 104064, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32653610

RESUMEN

In continuation of our previous work on the investigation of CDK9 inhibitors bearing indole moiety for the discovery of novel anticancer agents, novel methylenehydrazine-1-carboxamide derivatives with (5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1H-indole scaffold were designed, synthesized, and evaluated for the CDK9 inhibitory activity and anticancer activity. Biological activity results demonstrated that most of these derivatives possessed good inhibitory on the kinase activity of CDK9 such as blocking its phosphorylation function and inhibiting HIV-1 transcription. Compound 12i was found to be the most potent CDK9 inhibitor and exhibited excellent anticancer activity against HepG2, A375, MCF-7, and A549, but low toxic on normal cells including HaCaT and MCF-10A. Further studies revealed that as a result of CDK9 inhibition and subsequent inhibition of phosphorylation at Serine 2 of the RNAPII CTD, the representative compound 12i dose-dependently increased cleaved PARP level, exerting its antiproliferative effect through induction of apoptosis in cancer cells. Finally, the molecular docking analysis implied that 12i had a good binding affinity with CDK9. In summary, 12i is a potent CDK9 inhibitor and can be considered as a good lead-candidate for developing potential anticancer drugs.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Indoles/química , Simulación del Acoplamiento Molecular/métodos , Pirimidinas/síntesis química , Pirimidinas/uso terapéutico , Diseño de Fármacos , Humanos , Estructura Molecular , Pirimidinas/farmacología , Relación Estructura-Actividad
11.
RSC Adv ; 8(31): 17279-17292, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35539279

RESUMEN

The "shock and kill" strategy might be a promising therapeutic approach for HIV/AIDS due to the existence of latent viral reservoirs. A major challenge of the "shock and kill" strategy arises from the general lack of clinically effective latency-reversing agents (LRAs). The 2-methylquinoline derivative, antiviral 6 (AV6) has been reported to induce latent HIV-1 expression and act synergistically with a HDAC inhibitor VA to reverse HIV latency. We report herein the design and identification of AV6 analogues which possess the zinc-binding group of HDAC inhibitors and have dual acting mechanism for the reactivation of HIV-1 from latency. Evaluation of compounds for the reactivation of HIV-1 latency identified two excellent active compounds 12c and 12d. Further bioassays revealed that these two compounds reactivated latent HIV-1 through dual mechanism, the inhibition of HDACs and NFAT-required for early HIV-1 gene expression. Additionally, it was found that 12c and 12d could reactivate HIV-1 transcription by releasing P-TEFb from the inactive complex 7SK snRNP. At last, molecular docking identified their orientation and binding interactions at the active site of HDAC2. This experimental data suggests that 12c and 12d can be served as effective HIV-1 LRAs which can be taken up for further studies.

12.
Sci Rep ; 7(1): 10657, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878233

RESUMEN

The principal barrier to the eradication of HIV/AIDS is the existence of latent viral reservoirs. One strategy to overcome this barrier is to use latency-reversing agents (LRAs) to reactivate the latent proviruses, which can then be eliminated by effective anti-retroviral therapy. Although a number of LRAs have been found to reactivate latent HIV, they have not been used clinically due to high toxicity and poor efficacy. In this study, we report the identification of a chalcone analogue called Amt-87 that can significantly reactivate the transcription of latent HIV provirses and act synergistically with known LRAs such as prostratin and JQ1 to reverse latency. Amt-87 works by activating the human transcriptional elongation factor P-TEFb, a CDK9-cyclin T1 heterodimer that is part of the super elongation complex (SEC) used by the viral encoded Tat protein to activate HIV transcription. Amt-87 does so by promoting the phosphorylation of CDK9 at the T-loop, liberating P-TEFb from the inactive 7SK snRNP, and inducing the formation of the Tat-SEC complex at the viral promoter. Together, our data reveal chalcones as a promising category of compounds that should be further explored to identify effective LRAs for targeted reversal of HIV latency.


Asunto(s)
Chalconas/farmacología , Regulación Viral de la Expresión Génica/efectos de los fármacos , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Activación Viral/efectos de los fármacos , Latencia del Virus , Chalconas/química , Quinasa 9 Dependiente de la Ciclina/metabolismo , Genes Reporteros , Humanos , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
13.
Drug Deliv ; 24(1): 825-833, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28509588

RESUMEN

The natural product berberine (BBR), present in various plants, arouses great interests because of its numerous pharmacological effects. However, the further development and application of BBR had been hampered by its poor oral bioavailability. In this work, we report on polymer-lipid hybrid nanoparticles (PEG-lipid-PLGA NPs) loaded with BBR phospholipid complex using a solvent evaporation method for enhancing the oral BBR efficiency. The advantage of this new drug delivery system is that the BBR-soybean phosphatidylcholine complex (BBR-SPC) could be used to enhance the liposolubility of BBR and improve the affinity with the biodegradable polymer to increase the drug-loading capacity and controlled/sustained release. The entrapment efficiency of the PEG-lipid-PLGA NPs/BBR-SPC was observed to approach approximately 89% which is more than 2.4 times compared with that of the PEG-lipid-PLGA NPs/BBR. To the best of our knowledge, this is the first report on using polymer material for effective encapsulation of BBR to improve its oral bioavailability. The prepared BBR delivery systems demonstrated a uniform spherical shape, a well-dispersed core-shell structure and a small particle size (149.6 ± 5.1 nm). The crystallographic and thermal analysis has indicated that the BBR dispersed in the PEG-lipid-PLGA NPs matrix is in an amorphous form. More importantly, the enhancement in the oral relative bioavailability of the PEG-lipid-PLGA NPs/BBR-SPC was ∼343% compared with that of BBR. These positive results demonstrated that PEG-lipid-PLGA NPs/BBR-SPC may have the potential for facilitating the oral drug delivery of BBR.


Asunto(s)
Berberina/química , Fosfolípidos/química , Ácido Láctico , Nanopartículas , Tamaño de la Partícula , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
14.
Chem Biol Drug Des ; 88(5): 766-778, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27315790

RESUMEN

Three novel series of 2,5-disubstituted indole derivatives were synthesized and evaluated in vitro for their antiproliferative activity against human cancer cells and HIV-1 inhibition activity used as a readout of cellular activity. Most compounds were found to have potent anticancer activity. In particular, 2c and 3b which showed effectively to repress HIV-1 transcription had a pan antiproliferative activity in cervical cancer cells (HeLa), breast cancer cells (MCF-7), liver cancer cells (HepG2), and lung cancer cells (H460 and A549). While 3b exhibited high sensitivity to A549 cells with the IC50 value 0.48 ± 0.15 µm, 2c showed high selectivity toward HepG2 cells with the IC50 value 13.21 ± 0.30 µm. With respect to the cellular mechanism of action, HepG2 cells treated with 2c and A549 cells treated with 3b for 24 h were studied by annexin V/PI staining and Western blot analysis, and results revealed that 2c and 3b may induce cancer cells apoptosis through inhibiting the phosphorylation at Ser2 of RNAPII CTD which can be phosphorylated by cyclin-dependent kinase 9. These studies indicated that 2c and 3b may develop as potent lead compounds in the therapy of cancer. However, determining their roles in preventing HIV-1 still requires further intensive study.


Asunto(s)
Antineoplásicos/síntesis química , Indoles/química , Células A549 , Antineoplásicos/química , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 9 Dependiente de la Ciclina/metabolismo , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , VIH-1/efectos de los fármacos , VIH-1/metabolismo , Células HeLa , Células Hep G2 , Humanos , Indoles/síntesis química , Indoles/toxicidad , Células MCF-7 , Fosforilación/efectos de los fármacos , ARN Polimerasa II/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...