Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Sci Total Environ ; : 174478, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964381

RESUMEN

Perfluorooctane sulfonate (PFOS), a class of synthetic chemicals detected in various environmental compartments, has been associated with dysfunctions of the human central nervous system (CNS). However, the underlying neurotoxicology of PFOS exposure is largely understudied due to the lack of relevant human models. Here, we report bioengineered human midbrain organoid microphysiological systems (hMO-MPSs) to recapitulate the response of a fetal human brain to multiple concurrent PFOS exposure conditions. Each hMO-MPS consists of an hMO on a fully 3D printed holder device with a perfusable organoid adhesion layer for enhancing air-liquid interface culturing. Leveraging the unique, simply-fabricated holder devices, hMO-MPSs are scalable, easy to use, and compatible with conventional well-plates, and allow easy transfer onto a multiple-electrode array (MEA) system for plug-and-play measurement of neural activity. Interestingly, the neural activity of hMO-MPSs initially increased and subsequently decreased by exposure to a concentration range of 0, 30, 100, to 300 µM of PFOS. Furthermore, PFOS exposure impaired neural development and promoted neuroinflammation in the engineered hMO-MPSs. Along with PFOS, our platform is broadly applicable for studies toxicology of various other environmental pollutants.

2.
Nano Res ; 17(2): 462-475, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38712329

RESUMEN

Extracellular vesicles are nano- to microscale, membrane-bound particles released by cells into extracellular space, and act as carriers of biomarkers and therapeutics, holding promising potential in translational medicine. However, the challenges remain in handling and detecting extracellular vesicles for disease diagnosis as well as exploring their therapeutic capability for disease treatment. Here, we review the recent engineering and technology advances by leveraging the power of sound waves to address the challenges in diagnostic and therapeutic applications of extracellular vesicles and biomimetic nanovesicles. We first introduce the fundamental principles of sound waves for understanding different acoustic-assisted extracellular vesicle technologies. We discuss the acoustic-assisted diagnostic methods including the purification, manipulation, biosensing, and bioimaging of extracellular vesicles. Then, we summarize the recent advances in acoustically enhanced therapeutics using extracellular vesicles and biomimetic nanovesicles. Finally, we provide perspectives into current challenges and future clinical applications of the promising extracellular vesicles and biomimetic nanovesicles powered by sound.

3.
bioRxiv ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38617279

RESUMEN

Alzheimer's disease (AD) is a debilitating condition that affects millions of people worldwide. One promising strategy for detecting and monitoring AD early on is using extracellular vesicles (EVs)-based point-of-care testing; however, diagnosing AD using EVs poses a challenge due to the low abundance of EV-biomarkers. Here, we present a fully integrated organic electrochemical transistor (OECT) that enables high accuracy, speed, and convenience in the detection of EVs from AD patients. We incorporated self-aligned acoustoelectric enhancement of EVs on a chip that rapidly propels, enriches, and specifically binds EVs to the OECT detection area. With our enhancement of pre-concentration, we increased the sensitivity to a limit of detection of 500 EV particles/µL and reduced the required detection time to just two minutes. We also tested the sensor on an AD mouse model to monitor AD progression, examined mouse Aß EVs at different time courses, and compared them with intraneuronal Aß cumulation using MRI. This innovative technology has the potential to diagnose Alzheimer's and other neurodegenerative diseases accurately and quickly, enabling monitoring of disease progression and treatment response.

4.
Theriogenology ; 216: 127-136, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38181538

RESUMEN

Placental dysfunction is considered as one of the main etiologies of fetal intrauterine growth retardation (IUGR). MicroRNAs (miRNAs) have been demonstrated to be a vital epigenetic modification involved in regulating the placental function and pregnancy outcomes in mammals. However, the mechanisms underlying placenta-specific miRNAs involved in the occurrence and development of pig IUGR remain unclear. In this work, we compared the placental morphologies of piglets with IUGR and normal birth weight (NBW) by using histomorphological analysis and performed a miRNA-mRNA integrative analysis of the gene expression profiles of IUGR and NBW placentas through RNA sequencing. We also investigated the role of differentially expressed ssc-miR-339-5p/GRIK3 through an in vitro experiment on porcine trophoblast cells (PTr2). IUGR piglets had significantly lower birth weight, placental weight, placental efficiency, and placental villus and capillary densities compared with the NBW piglets (P < 0.05). A total of 81 differentially expressed miRNAs and 726 differentially expressed genes in the placentas were screened out between the IUGR and NBW groups. The miRNA-mRNA interaction networks revealed the key core miRNA (ssc-miR-339-5p) and its corresponding target genes. Subsequently, we found that upregulation of ssc-miR-339-5p significantly inhibited the migration and proliferation of PTr2 cells (P < 0.05). The dual-luciferase reporter system showed that GRIK3 was the target gene of ssc-miR-339-5p, and the transcription level of GRIK3 may be negatively regulated by ssc-miR-339-5p. Additionally, overexpression of ssc-miR-339-5p significantly increased (P < 0.05) the mRNA expression levels of genes involved in the cytokine-cytokine receptor interaction pathway. These results indicate that ssc-miR-339-5p may affect the migration and proliferation of trophoblast cells by regulating the expression of GRIK3 and altering the placental inflammatory response, resulting in a suboptimal morphology and function of the placenta and the development of pig IUGR.


Asunto(s)
MicroARNs , Enfermedades de los Porcinos , Animales , Femenino , Embarazo , Porcinos , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/veterinaria , Retardo del Crecimiento Fetal/metabolismo , Transcriptoma , Peso al Nacer , Placenta/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular , Trofoblastos/fisiología , ARN Mensajero/metabolismo , Mamíferos , Enfermedades de los Porcinos/metabolismo
5.
J Steroid Biochem Mol Biol ; 236: 106429, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38035949

RESUMEN

Testosterone is a vital male hormone responsible for male sexual characteristics. The taste receptor family 1 subunit 3 (T1R3) regulates testosterone synthesis and autophagy in non-taste cells, and the links with the taste receptor family 1 subunit 1 (T1R1) for umami perception. However, little is known about these mechanisms. Thus, we aimed to determine the relationship between the umami taste receptor (T1R1/T1R3) and testosterone synthesis or autophagy in testicular Leydig cells of the Xiang pig. There was a certain proportion of spermatogenic tubular dysplasia in the Xiang pig at puberty, in which autophagy was enhanced, and the testosterone level was increased with a weak expression of T1R3. Silenced T1R3 decreased testosterone level and intracellular cyclic adenosine monophosphate (cAMP) content and inhibited the messenger RNA (mRNA) expression levels of testosterone synthesis enzyme genes [steroidogenic acute regulatory protein (StAR), hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (3ß-HSD1), cytochrome P450 family 17 subfamily A member 1 (CYP17A1) and hydroxysteroid 17-beta dehydrogenase 3 (17ß-HSD3)]. In addition, T1R3 increased the number of acidic autophagy bubbles and upregulated the expression levels of autophagy markers [Microtubule-associated protein 1 A/1B-light chain 3 (LC3) and Beclin-1] in testicular Leydig cells of the Xiang pig. Using an umami tasting agonist (10 mM L-glutamate for 6 h), the activation of T1R1/T1R3 enhanced the testosterone synthesis ability by increasing the intracellular cAMP level and upregulated the expression levels of StAR, 3ß-HSD1, CYP17A1 and 17ß-HSD3 in Leydig cells. Furthermore, the number of acidic autophagy bubbles decreased in the T1R1/T1R3-activated group with the downregulation of the expression levels of the autophagy markers, including LC3 and Beclin-1. These data suggest that the function of T1R1/T1R3 expressed in testicular Leydig cells of the Xiang pig is related to testosterone synthesis and autophagy.


Asunto(s)
Células Intersticiales del Testículo , Gusto , Masculino , Animales , Porcinos , Gusto/fisiología , Células Intersticiales del Testículo/metabolismo , Testículo/metabolismo , Beclina-1 , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Maduración Sexual , Testosterona , Autofagia
6.
Trop Anim Health Prod ; 55(5): 340, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770796

RESUMEN

The neonate with low birth weight (LBW) resulted from intrauterine growth retardation (IUGR) exists a substantial risk of postpartum death. Placental insufficiency is responsible for inadequate fetal growth; however, the pathological mechanisms of placental dysfunction-induced IUGR in pigs remain unclear. In this study, the characteristics of placental morphology, placental transcriptome, and cord serum metabolome were explored between the Kele piglets with LBW and the ones with normal birth weight (NBW). Results showed that LBW was a common occurrence in Kele piglets. The LBW placentas showed inferior villus development and lower villi density compared to NBW placentas. There were 1024 differentially expressed genes (DEGs) identified by transcriptome analysis between the LBW and NBW placentas, of which 218 and 806 genes were up- and down-regulated in the LBW placentas, respectively. PPI network analysis showed that ITGB2, CD4, IL6, ITGB3, LCK, RAC2, CD8A, JAK3, TYROBP, and CXCR4 were hub genes in all DEGs. From GO and KEGG enrichment analysis, DEGs were primarily enriched in immunological response, cell adhesion, immune response, cytokine-cytokine receptor interaction, and PI3K-Akt signaling pathway. By using metabolomic analysis, a total of 115 differential metabolites in the cord serum of LBW and NBW piglets were found, mostly linked to amino acid metabolism and sphingolipid metabolism. In comparison to NBW piglets, LBW piglets had lower levels of arginine, isoleucine, and aspartic acid in the cord. Taken together, these data revealed dysplasia of the placental villus, insufficient supply of nutrients, and abnormal immune function of the placenta may be associated with the occurrence and development of LBW in Kele pigs.


Asunto(s)
Placenta , Transcriptoma , Animales , Porcinos , Femenino , Embarazo , Placenta/metabolismo , Peso al Nacer , Fosfatidilinositol 3-Quinasas/metabolismo , Metaboloma
8.
Front Vet Sci ; 10: 1167758, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180060

RESUMEN

Circular RNAs (circRNAs) play an important role in regulating the mammalian reproductive system, especially testicular development and spermatogenesis. However, their functions in testicular development and spermatogenesis in the Qianbei Ma goat, the Guizhou endemic breed are still unclear. In this study, tissue sectioning and circRNAs transcriptome analysis were conducted to compare the changes of morphology and circular RNAs gene expression profile at four different developmental stages (0Y, 0-month-old; 6Y, 6-month-old; 12Y, 12-month-old; 18Y, 18-month-old). The results showed that the circumferences and area of the seminiferous tubule gradually increased with age, and the lumen of the seminiferous tubule in the testis differentiated significantly. 12,784 circRNAs were detected from testicular tissues at four different developmental stages by RNA sequencing, and 8,140 DEcircRNAs (differentially expressed circRNAs) were found in 0Y vs. 6Y, 6Y vs. 12Y, 12Y vs. 18Y and 0Y vs. 18Y, 0Y vs. 12Y, 6Y vs. 18Y Functional enrichment analysis of the source genes showed that they were mainly enriched in testicular development and spermatogenesis. In addition, the miRNAs and mRNAs associated with DECircRNAs in 6 control groups were predicted by bioinformatics, and 81 highly expressed DECircRNAs and their associated miRNAs and mRNAs were selected to construct the ceRNA network. Through functional enrichment analysis of the target genes of circRNAs in the network, some candidate circRNAs related to testicular development and spermatogenesis were obtained. Such as circRNA_07172, circRNA_04859, circRNA_07832, circRNA_00032 and circRNA_07510. These results will help to reveal the mechanism of circRNAs in testicular development and spermatogenesis, and also provide some guidance for goat reproduction.

9.
Genes (Basel) ; 14(4)2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37107630

RESUMEN

Fatty acids (FAs) are essential substances for the growth and development of the fetus and placenta. The growing fetus and placenta must obtain adequate FAs received from the maternal circulation and facilitated by various placental FA carriers, including FA transport proteins (FATPs), FA translocase (FAT/CD36), and cytoplasmic FA binding proteins (FABPs). Placental nutrition transport was regulated by imprinted genes H19 and insulin-like growth factor 2 (IGF2). Nevertheless, the relationship between the expression patterns of H19/IGF2 and placental fatty acid metabolism throughout pig pregnancy remains poorly studied and unclear. We investigated the placental fatty acid profile, expression patterns of FA carriers, and H19/IGF2 in the placentae on Days 40 (D40), 65 (D65), and 95 (D95) of pregnancy. The results showed that the width of the placental folds and the number of trophoblast cells of D65 placentae were significantly increased than those of D40 placentae. Several important long-chain FAs (LCFAs), including oleic acid, linoleic acid, arachidonatic acid, eicosapentaenoic acid, and docosatetraenoic acid, in the pig placenta showed dramatically increased levels throughout pregnancy. The pig placenta possessed higher expression levels of CD36, FATP4, and FABP5 compared with other FA carriers, and their expression levels had significantly upregulated 2.8-, 5.6-, and 12.0-fold from D40 to D95, respectively. The transcription level of IGF2 was dramatically upregulated and there were corresponding lower DNA methylation levels in the IGF2 DMR2 in D95 placentae relative to D65 placentae. Moreover, in vitro experimentation revealed that the overexpression of IGF2 resulted in a significant increase in fatty acid uptake and expression levels of CD36, FATP4, and FABP5 in PTr2 cells. In conclusion, our results indicate that CD36, FATP4, and FABP5 may be important regulators that enhance the transport of LCFAs in the pig placenta and that IGF2 may be involved in FA metabolism by affecting the FA carriers expression to support the growth of the fetus and placenta during late pregnancy in pigs.


Asunto(s)
Ácidos Grasos , Placenta , Embarazo , Femenino , Animales , Porcinos , Placenta/metabolismo , Ácidos Grasos/metabolismo , Metilación de ADN , Feto/metabolismo , Trofoblastos/metabolismo , Proteínas Portadoras/genética
10.
bioRxiv ; 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36909615

RESUMEN

Brain-inspired hardware emulates the structure and working principles of a biological brain and may address the hardware bottleneck for fast-growing artificial intelligence (AI). Current brain-inspired silicon chips are promising but still limit their power to fully mimic brain function for AI computing. Here, we develop Brainoware , living AI hardware that harnesses the computation power of 3D biological neural networks in a brain organoid. Brain-like 3D in vitro cultures compute by receiving and sending information via a multielectrode array. Applying spatiotemporal electrical stimulation, this approach not only exhibits nonlinear dynamics and fading memory properties but also learns from training data. Further experiments demonstrate real-world applications in solving non-linear equations. This approach may provide new insights into AI hardware.

11.
Mol Reprod Dev ; 90(4): 248-259, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36916007

RESUMEN

Intrauterine growth restriction (IUGR) is a severe complication in swine production. Placental insufficiency is responsible for inadequate fetal growth, but the specific etiology of placental dysfunction-induced IUGR in pigs remains poorly understood. In this work, placenta samples supplying the lightest weight (LW) and mean weight (MW) pig fetuses in the litter at Day 65 (D65) of gestation were collected, and the relationship between fetal growth and placental morphologies and functions was investigated using histomorphological analysis, RNA sequencing, quantitative polymerase chain reaction, and in vitro experiment in LW and MW placentas. Results showed that the folded structure of the epithelial bilayer of LW placentas followed a poor and incomplete development compared with that of MW placentas. A total of 654 differentially expressed genes (DEGs) were screened out between the LW and MW placentas, and the gene encodes receptor for activated C kinase 1 (RACK1) was found to be downregulated in LW placentas. The DEGs were mainly enriched in translation, ribosome, protein synthesis, and mammalian target of rapamycin (mTOR) signaling pathway according to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. In vitro experiments indicated that the decreased RACK1 in LW placentas may be involved in abnormal development of placental folds (PFs) by inhibiting the proliferation and migration of porcine trophoblast cells. Taken together, these results revealed that RACK1 may be a vital regulator in the development of PFs via regulating trophoblast cell proliferation and migration in pigs.


Asunto(s)
Placentación , Trofoblastos , Humanos , Embarazo , Porcinos , Femenino , Animales , Trofoblastos/metabolismo , Placenta/metabolismo , Desarrollo Fetal/fisiología , Retardo del Crecimiento Fetal/metabolismo , Proliferación Celular , Mamíferos , Receptores de Cinasa C Activada/metabolismo , Proteínas de Neoplasias
12.
J Nanobiotechnology ; 21(1): 40, 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739414

RESUMEN

Cancer immunotherapy shows promising potential for treating breast cancer. While patients may have heterogeneous treatment responses for adjuvant therapy, it is challenging to predict an individual patient's response to cancer immunotherapy. Here, we report primary tumor-derived organotypic cell clusters (POCCs) for rapid and reliable evaluation of cancer immunotherapy. By using a label-free, contactless, and highly biocompatible acoustofluidic method, hundreds of cell clusters could be assembled from patient primary breast tumor dissociation within 2 min. Through the incorporation of time-lapse living cell imaging, the POCCs could faithfully recapitulate the cancer-immune interaction dynamics as well as their response to checkpoint inhibitors. Superior to current tumor organoids that usually take more than two weeks to develop, the POCCs can be established and used for evaluation of cancer immunotherapy within 12 h. The POCCs can preserve the cell components from the primary tumor due to the short culture time. Moreover, the POCCs can be assembled with uniform fabricate size and cell composition and served as an open platform for manipulating cell composition and ratio under controlled treatment conditions with a short turnaround time. Thus, we provide a new method to identify potentially immunogenic breast tumors and test immunotherapy, promoting personalized cancer therapy.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/terapia , Inmunoterapia/métodos
13.
Nat Commun ; 14(1): 869, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797284

RESUMEN

Transdermal drug delivery provides convenient and pain-free self-administration for personalized therapy. However, challenges remain in treating acute diseases mainly due to their inability to timely administrate therapeutics and precisely regulate pharmacokinetics within a short time window. Here we report the development of active acoustic metamaterials-driven transdermal drug delivery for rapid and on-demand acute disease management. Through the integration of active acoustic metamaterials, a compact therapeutic patch is integrated for penetration of skin stratum corneum and active percutaneous transport of therapeutics with precise control of dose and rate over time. Moreover, the patch device quantitatively regulates the dosage and release kinetics of therapeutics and achieves better delivery performance in vivo than through subcutaneous injection. As a proof-of-concept application, we show our method can reverse life-threatening acute allergic reactions in a female mouse model of anaphylaxis via a multi-burst delivery of epinephrine, showing better efficacy than a fixed dosage injection of epinephrine, which is the current gold standard 'self-injectable epinephrine' strategy. This innovative method may provide a promising means to manage acute disease for personalized medicine.


Asunto(s)
Sistemas de Liberación de Medicamentos , Piel , Animales , Ratones , Femenino , Enfermedad Aguda , Sistemas de Liberación de Medicamentos/métodos , Administración Cutánea , Acústica
14.
Bioact Mater ; 22: 482-490, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36330161

RESUMEN

pioids are commonly used for treating chronic pain. However, with continued use, they may induce tolerance and/or hyperalgesia, which limits therapeutic efficacy. The human mechanisms of opioid-induced tolerance and hyperalgesia are significantly understudied, in part, because current models cannot fully recapitulate human pathology. Here, we engineered novel human spinal microphysiological systems (MPSs) integrated with plug-and-play neural activity sensing for modeling human nociception and opioid-induced tolerance. Each spinal MPS consists of a flattened human spinal cord organoid derived from human stem cells and a 3D printed organoid holder device for plug-and-play neural activity measurement. We found that the flattened organoid design of MPSs not only reduces hypoxia and necrosis in the organoids, but also promotes their neuron maturation, neural activity, and functional development. We further demonstrated that prolonged opioid exposure resulted in neurochemical correlates of opioid tolerance and hyperalgesia, as measured by altered neural activity, and downregulation of µ-opioid receptor expression of human spinal MPSs. The MPSs are scalable, cost-effective, easy-to-use, and compatible with commonly-used well-plates, thus allowing plug-and-play measurements of neural activity. We believe the MPSs hold a promising translational potential for studying human pain etiology, screening new treatments, and validating novel therapeutics for human pain medicine.

15.
Chinese Medical Ethics ; (6): 1208-1215, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1005582

RESUMEN

【Objective:】 To understand the development of narrative medicine in medical schools and the cognitive level of narrative medicine among medical students. 【Methods:】 Taking 2,353 medical students nationwide as the research subjects, Knowledge, Attitude/Belief, Practice (KAP) questionnaire was distributed online to conduct a survey. The survey results were analyzed from the perspectives of general knowledge, ways to understand narrative medicine, and cognitive level of parallel medical records. 【Results:】 44.50% of the survey respondents had never learned about narrative medicine, and 50.79% of them had never heard of parallel medical records. 26.80% of the survey respondents had participated in the training of narrative medicine courses, while most medical students learned about narrative medicine through other ways. 【Conclusion:】 This paper showed that the majority of the survey respondents are not familiar with the key concepts of narrative medicine. By introducing the concept of big culture in anthropology into medical college education or exploring the perspective of doctor-patient interaction, integrating communication models to improve doctor-patient relationships. The current popularization level of parallel medical records and narrative types among medical students is not good, and the cultivation of cultural sensitivity and reflective ability may help promote the teaching and application of parallel medical records. Multiple learning pathways lay the foundation for further teaching, and build a diversified teaching system to enrich the course content, which should be the focus of promoting narrative medicine education in the future.

16.
Proc Natl Acad Sci U S A ; 119(46): e2214569119, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343225

RESUMEN

Immunocyte infiltration and cytotoxicity play critical roles in both inflammation and immunotherapy. However, current cancer immunotherapy screening methods overlook the capacity of the T cells to penetrate the tumor stroma, thereby significantly limiting the development of effective treatments for solid tumors. Here, we present an automated high-throughput microfluidic platform for simultaneous tracking of the dynamics of T cell infiltration and cytotoxicity within the 3D tumor cultures with a tunable stromal makeup. By recourse to a clinical tumor-infiltrating lymphocyte (TIL) score analyzer, which is based on a clinical data-driven deep learning method, our platform can evaluate the efficacy of each treatment based on the scoring of T cell infiltration patterns. By screening a drug library using this technology, we identified an epigenetic drug (lysine-specific histone demethylase 1 inhibitor, LSD1i) that effectively promoted T cell tumor infiltration and enhanced treatment efficacy in combination with an immune checkpoint inhibitor (anti-PD1) in vivo. We demonstrated an automated system and strategy for screening immunocyte-solid tumor interactions, enabling the discovery of immuno- and combination therapies.


Asunto(s)
Aprendizaje Profundo , Neoplasias , Humanos , Microfluídica/métodos , Detección Precoz del Cáncer , Inmunoterapia/métodos , Linfocitos Infiltrantes de Tumor , Factores Inmunológicos , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
17.
Adv Sci (Weinh) ; 9(27): e2200475, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35908805

RESUMEN

The aging of the immune system drives systemic aging and the pathogenesis of age-related diseases. However, a significant knowledge gap remains in understanding immune-driven aging, especially in brain aging, due to the limited current in vitro models of neuroimmune interaction. Here, the authors report the development of a human brain organoid microphysiological analysis platform (MAP) to discover the dynamic process of immune-driven brain aging. The organoid MAP is created by 3D printing that confines organoid growth and facilitates cell and nutrition perfusion, promoting organoid maturation and their committment to forebrain identity. Dynamic rocking flow is incorporated into the platform that allows to perfuse primary monocytes from young (20 to 30-year-old) and aged (>60-year-old) donors and culture human cortical organoids to model neuroimmune interaction. The authors find that the aged monocytes increase infiltration and promote the expression of aging-related markers (e.g., higher expression of p16) within the human cortical organoids, indicating that aged monocytes may drive brain aging. The authors believe that the organoid MAP may provide promising solutions for basic research and translational applications in aging, neural immunological diseases, autoimmune disorders, and cancer.


Asunto(s)
Neoplasias , Organoides , Adulto , Envejecimiento , Encéfalo , Humanos , Inmunoterapia , Persona de Mediana Edad , Adulto Joven
18.
J Nanobiotechnology ; 20(1): 349, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35897102

RESUMEN

BACKGROUND AND AIMS: Non-alcoholic fatty liver disease (NAFLD) is a usual chronic liver disease and lacks non-invasive biomarkers for the clinical diagnosis and prognosis. Extracellular vesicles (EVs), a group of heterogeneous small membrane-bound vesicles, carry proteins and nucleic acids as promising biomarkers for clinical applications, but it has not been well explored on their lipid compositions related to NAFLD studies. Here, we investigate the lipid molecular function of urinary EVs and their potential as biomarkers for non-alcoholic steatohepatitis (NASH) detection. METHODS: This work includes 43 patients with non-alcoholic fatty liver (NAFL) and 40 patients with NASH. The EVs of urine were isolated and purified using the EXODUS method. The EV lipidomics was performed by LC-MS/MS. We then systematically compare the EV lipidomic profiles of NAFL and NASH patients and reveal the lipid signatures of NASH with the assistance of machine learning. RESULTS: By lipidomic profiling of urinary EVs, we identify 422 lipids mainly including sterol lipids, fatty acyl lipids, glycerides, glycerophospholipids, and sphingolipids. Via the machine learning and random forest modeling, we obtain a biomarker panel composed of 4 lipid molecules including FFA (18:0), LPC (22:6/0:0), FFA (18:1), and PI (16:0/18:1), that can distinguish NASH with an AUC of 92.3%. These lipid molecules are closely associated with the occurrence and development of NASH. CONCLUSION: The lack of non-invasive means for diagnosing NASH causes increasing morbidity. We investigate the NAFLD biomarkers from the insights of urinary EVs, and systematically compare the EV lipidomic profiles of NAFL and NASH, which holds the promise to expand the current knowledge of disease pathogenesis and evaluate their role as non-invasive biomarkers for NASH diagnosis and progression.


Asunto(s)
Vesículas Extracelulares , Enfermedad del Hígado Graso no Alcohólico , Biomarcadores/metabolismo , Cromatografía Liquida , Vesículas Extracelulares/metabolismo , Humanos , Lipidómica , Lípidos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Espectrometría de Masas en Tándem
19.
Theranostics ; 12(8): 3628-3636, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35664082

RESUMEN

Rationale: Predicting tumor responses to adjuvant therapies can potentially help guide treatment decisions and improve patient survival. Currently, tumor pathology, histology, and molecular profiles are being integrated into personalized profiles to guide therapeutic decisions. However, it remains a grand challenge to evaluate tumor responses to immunotherapy for personalized medicine. Methods: We present a microfluidics-based mini-tumor chip approach to predict tumor responses to cancer immunotherapy in a preclinical model. By uniformly infusing dissociated tumor cells into isolated microfluidic well-arrays, 960 mini-tumors could be uniformly generated on-chip, with each well representing the ex vivo tumor niche that preserves the original tumor cell composition and dynamic cell-cell interactions and autocrine/paracrine cytokines. Results: By incorporating time-lapse live-cell imaging, our mini-tumor chip allows the investigation of dynamic immune-tumor interactions as well as their responses to cancer immunotherapy (e.g., anti-PD1 treatment) in parallel within 36 hours. Additionally, by establishing orthotopic breast tumor models with constitutive differential PD-L1 expression levels, we showed that the on-chip interrogation of the primary tumor's responses to anti-PD1 as early as 10 days post tumor inoculation could predict the in vivo tumors' responses to anti-PD1 at the endpoint of day 24. We also demonstrated the application of this mini-tumor chip to interrogate on-chip responses of primary tumor cells isolated from primary human breast and renal tumor tissues. Conclusions: Our approach provides a simple, quick-turnaround solution to measure tumor responses to cancer immunotherapy.


Asunto(s)
Inmunoterapia , Neoplasias , Terapia Combinada , Humanos , Inmunoterapia/métodos , Microfluídica , Neoplasias/terapia , Medicina de Precisión/métodos , Microambiente Tumoral
20.
Adv Sci (Weinh) ; 9(22): e2201478, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35611994

RESUMEN

Tumor microenvironment crosstalk, in particular interactions between cancer cells, T cells, and myeloid-derived suppressor cells (MDSCs), mediates tumor initiation, progression, and response to treatment. However, current patient-derived models such as tumor organoids and 2D cultures lack some essential niche cell types (e.g., MDSCs) and fail to model complex tumor-immune interactions. Here, the authors present the novel acoustically assembled patient-derived cell clusters (APCCs) that can preserve original tumor/immune cell compositions, model their interactions in 3D microenvironments, and test the treatment responses of primary tumors in a rapid, scalable, and user-friendly manner. By incorporating a large array of 3D acoustic trappings within the extracellular matrix, hundreds of APCCs can be assembled within a petri dish within 2 min. Moreover, the APCCs can preserve sensitive and short-lived (≈1 to 2-day lifespan in vivo) tumor-induced MDSCs and model their dynamic suppression of T cell tumor toxicity for up to 24 h. Finally, using the APCCs, the authors succesully model the combinational therapeutic effect of a multi-kinase inhibitor targeting MDSCs (cabozantinib) and an anti-PD-1 immune checkpoint inhibitor (pembrolizumab). The novel APCCs may hold promising potential in predicting treatment response for personalized cancer adjuvant therapy as well as screening novel cancer immunotherapy and combinational therapy.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Células Supresoras de Origen Mieloide/metabolismo , Neoplasias/terapia , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...