RESUMEN
Bladder cancer (BC) is the second most common type of cancer of the urinary system. Approximately 75% of the cases are non-muscle invasive bladder cancer (NMIBC), which has a high recurrence and progression rate. Current diagnosis and surveillance methods present challenges, including risks to the patients. For this reason, urinary biomarkers have been proposed as alternatives to the methods. The goal of this mini-review is to describe urinary mRNA-based biomarkers available in current literature for NMIBC tumors, using the PubMed database. The search included the following keywords: "biomarkers" AND "bladder cancer" AND "urine" and "RNA" and "non-muscle". The search yielded 11 original researchers utilizing mRNA-based urinary biomarkers. Although there is a wide variety of biomarkers described, the cohorts of the studies were not exclusively NMIBC, which is the subtype of BC that would mostly benefit from the introduction of a good follow-up biomarker, highlighting the need for randomized interventional trials for NMIBC.
RESUMEN
Molecular diagnostics involving nucleic acids (DNA and RNA) are regarded as extremely functional tools. During the 2020 global health crisis, efforts intensified to optimize the production and delivery of molecular diagnostic kits for detecting SARS-CoV-2. During this period, RT-LAMP emerged as a significant focus. However, the thermolability of the reagents used in this technique necessitates special low-temperature infrastructure for transport, storage, and conservation. These requirements limit distribution capacity and necessitate cost-increasing adaptations. Consequently, this report details the development of a lyophilization protocol for reagents in a colorimetric RT-LAMP diagnostic kit to detect SARS-CoV-2, facilitating room-temperature transport and storage. We conducted tests to identify the ideal excipients that maintain the molecular integrity of the reagents and ensure their stability during room-temperature storage and transport. The optimal condition identified involved adding 5% PEG 8000 and 75 mM trehalose to the RT-LAMP reaction, which enabled stability at room temperature for up to 28 days and yielded an analytical and diagnostic sensitivity and specificity of 83.33% and 90%, respectively, for detecting SARS-CoV-2. This study presents the results of a lyophilized colorimetric RT-LAMP COVID-19 detection assay with diagnostic sensitivity and specificity comparable to RT-qPCR, particularly in samples with high viral load.
Asunto(s)
COVID-19 , Colorimetría , Liofilización , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , ARN Viral , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/virología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , Colorimetría/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , ARN Viral/análisis , ARN Viral/genética , Sensibilidad y Especificidad , Juego de Reactivos para Diagnóstico/normas , Prueba de Ácido Nucleico para COVID-19/métodosRESUMEN
Chronic myeloid leukemia (CML) is a type of leukemia whose main genetic marker is the reciprocal translocation that leads to the production of the BCR::ABL1 oncoprotein. The expression of some genes may interfere with the progression and development of leukemias. MicroRNAs are small non-coding RNAs that have the potential to alter the expression of some genes and may be correlated with some types of leukemia and could be used as biomarkers in the diagnosis and prognosis of patients. Therefore, this project carried out an analysis of microRNA-type plasma biomarkers in patients with chronic myeloid leukemia at unique points, including follow-up analysis of patients from the Erasto Gaertner Hospital. 35 microRNAs were analyzed in different cohorts. Inside those groups, 70 samples were analyzed at unique points and 11 patients in a follow-up analysis. Statistically different results were found for microRNA-7-5p, which was found to be upregulated in patients with high expression of the BCR::ABL1 transcript when compared to healthy controls. This microRNA also had evidence of behavior related to BCR::ABL1 when analyzed in follow-up, but strong evidence was not found. In this way, this work obtained results that may lead to manifestations of a relationship between miR-7-5p and chronic myeloid leukemia, and evaluations of possible microRNAs that are not related to this pathology.
Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , MicroARNs , Humanos , MicroARNs/genética , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/diagnóstico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Translocación Genética , BiomarcadoresRESUMEN
BACKGROUND: The median age for Prostate Cancer (PCa) diagnosis is 66 years, but 10% are diagnosed before 55 years. Studies on early-onset PCa remain both limited and controversial. This investigation sought to identify and characterize germline variants within Brazilian PCa patients classified as either early or later onset disease. METHODS: Peripheral blood DNA from 71 PCa patients: 18 younger (≤ 55 years) and 53 older (≥ 60 years) was used for Targeted DNA sequencing of 20 genes linked to DNA damage response, transcriptional regulation, cell cycle, and epigenetic control. Subsequent genetic variant identification was performed and variant functional impacts were analyzed with in silico prediction. RESULTS: A higher frequency of variants in the BRCA2 and KMT2C genes across both age groups. KMT2C has been linked to the epigenetic dysregulation observed during disease progression in PCa. We present the first instance of KMT2C mutation within the blood of Brazilian PCa patients. Furthermore, out of the recognized variants within the KMT2C gene, 7 were designated as deleterious. Thirteen deleterious variants were exclusively detected in the younger group, while the older group exhibited 37 variants. Within these findings, 4 novel variants emerged, including 1 designated as pathogenic. CONCLUSIONS: Our findings contribute to a deeper understanding of the genetic factors associated with PCa susceptibility in different age groups, especially among the Brazilian population. This is the first investigation to explore germline variants specifically in younger Brazilian PCa patients, with high relevance given the genetic diversity of the population in Brazil. Additionally, our work presents evidence of functionally deleterious germline variants within the KMT2C gene among Brazilian PCa patients. The identification of novel and functionally significant variants in the KMT2C gene emphasizes its potential role in PCa development and warrants further investigation.
Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Anciano , Brasil , Neoplasias de la Próstata/patología , Mutación de Línea Germinal , Mutación , Células Germinativas/patología , Predisposición Genética a la EnfermedadRESUMEN
The pathogenesis of Dengue virus (DENV) infection is complex and involves viral replication that may trigger an inflammatory response leading to severe disease. Here, we investigated the correlation between viremia and cytokine levels in the serum of DENV-infected patients. Between 2013 and 2014, 138 patients with a diagnosis of acute-phase DENV infection and 22 patients with a non-dengue acute febrile illness (AFI) were enrolled. Through a focus-forming assay (FFU), we determined the viremia levels in DENV-infected patients and observed a peak in the first two days after the onset of symptoms. A higher level of viremia was observed in primary versus secondary DENV-infected patients. Furthermore, no correlation was observed between viremia and inflammatory cytokine levels in DENV-infected patients. Receiver operating characteristic (ROC) curve analysis revealed that IL-2 has the potential to act as a marker to distinguish dengue from other febrile illnesses and is positively correlated with Th1 cytokines. IFN-α and IFN-γ appear to be potential markers of primary versus secondary infection in DENV-infected patients, respectively. The results also indicate that viremia levels are not the main driving force behind inflammation in dengue and that cytokines could be used as infection biomarkers and for differentiation between primary versus secondary infection.
RESUMEN
Exosomes, organelles measuring 30-200nm, are secreted by various cell types. Leishmania exosomes consist of many proteins, including heat shock proteins, annexins, Glycoprotein 63, proteins exerting signaling activity and those containing mRNA and miRNA. Studies have demonstrated that Leishmania donovani exosomes downregulate IFN-γ and inhibit the expression of microbicidal molecules, such as TNF and nitric oxide, thus creating a microenvironment favoring parasite proliferation. Despite lacking immunological memory, data in the literature suggest that, following initial stimulation, mononuclear phagocytes may become "trained" to respond more effectively to subsequent stimuli. Here we characterized the effects of macrophage sensitization using L. braziliensis exosomes prior to infection by the same pathogen. Human macrophages were stimulated with L. braziliensis exosomes and then infected with L. braziliensis. Higher levels of IL-1ß and IL-6 were detected in cultures sensitized prior to infection compared to unstimulated infected cells. Moreover, stimulation with L. braziliensis exosomes induced macrophage production of IL-1ß, IL-6, IL-10 and TNF. Inhibition of exosome secretion by L. braziliensis prior to macrophage infection reduced cytokine production and produced lower infection rates than untreated infected cells. Exosome stimulation also induced the consumption/regulation of NLRP3 inflammasome components in macrophages, while the blockade of NLRP3 resulted in lower levels of IL-6 and IL-1ß. Our results suggest that L. braziliensis exosomes stimulate macrophages, leading to an exacerbated inflammatory state that may be NLRP3-dependent.
Asunto(s)
Exosomas , Leishmania braziliensis , Leishmania donovani , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR , Interleucina-6/farmacología , MacrófagosRESUMEN
In the oncological area, pancreatic cancer is one of the most lethal diseases, with 5-year survival rising just 10% in high-development countries. This disease is genetically characterized by KRAS as a driven mutation followed by SMAD4, CDKN2, and TP53-associated mutations. In clinical aspects, pancreatic cancer presents unspecific clinical symptoms with the absence of screening and early plasmatic biomarker, being that CA19-9 is the unique plasmatic biomarker having specificity and sensitivity limitations. We analyzed the plasmatic exosome proteomic profile of 23 patients with pancreatic cancer and 10 healthy controls by using Nanoscale liquid chromatography coupled to tandem mass spectrometry (NanoLC-MS/MS). The pancreatic cancer patients were subdivided into IPMN and PDAC. Our findings show 33, 34, and 7 differentially expressed proteins when comparing the IPMN vs. control, PDAC-No treatment vs. control, and PDAC-No treatment vs. IPMN groups, highlighting proteins of the complement system and coagulation, such as C3, APOB, and SERPINA. Additionally, PDAC with no treatment showed 11 differentially expressed proteins when compared to Folfirinox neoadjuvant therapy or Gemcitabine adjuvant therapy. So here, we found plasmatic exosome-derived differentially expressed proteins among cancer patients (IPMN, PDAC) when comparing with healthy controls, which could represent alternative biomarkers for diagnostic and prognostic evaluation, supporting further scientific and clinical studies on pancreatic cancer.
Asunto(s)
Exosomas , Neoplasias Intraductales Pancreáticas , Neoplasias Pancreáticas , Humanos , Detección Precoz del Cáncer , Pronóstico , Neoplasias Pancreáticas/diagnóstico , Protocolos de Quimioterapia Combinada Antineoplásica , Proteómica , Espectrometría de Masas en Tándem , Antígeno CA-19-9 , Neoplasias PancreáticasRESUMEN
BACKGROUND: The genomes of present-day non-Africans are composed of 1-3% of Neandertal-derived DNA as a consequence of admixture events between Neandertals and anatomically modern humans about 50-60 thousand years ago. Neandertal-introgressed single nucleotide polymorphisms (aSNPs) have been associated with modern human disease-related traits, which are risk factors for pancreatic ductal adenocarcinoma (PDAC), such as obesity, type 2 diabetes, and inflammation. In this study, we aimed at investigating the role of aSNPs in PDAC in three Eurasian populations. RESULTS: The high-coverage Vindija Neandertal genome was used to select aSNPs in non-African populations from 1000 Genomes project phase 3 data. Then, the association between aSNPs and PDAC risk was tested independently in Europeans and East Asians, using existing GWAS data on more than 200 000 individuals. We did not find any significant associations between aSNPs and PDAC in samples of European descent, whereas, in East Asians, we observed that the Chr10p12.1-rs117585753-T allele (MAF = 10%) increased the risk to develop PDAC (OR = 1.35, 95%CI 1.19-1.54, P = 3.59 × 10-6), with a P-value close to a threshold that takes into account multiple testing. CONCLUSIONS: Our results show only a minimal contribution of Neandertal SNPs to PDAC risk.
Asunto(s)
Carcinoma Ductal Pancreático , Diabetes Mellitus Tipo 2 , Hombre de Neandertal , Neoplasias Pancreáticas , Humanos , Animales , Hombre de Neandertal/genética , Polimorfismo de Nucleótido Simple , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genéticaRESUMEN
Chronic myeloid leukemia (CML) is a well-characterized oncological disease in which virtually all patients possess a translocation (9;22) that generates the tyrosine kinase BCR::ABL1 protein. This translocation represents one of the milestones in molecular oncology in terms of both diagnostic and prognostic evaluations. The molecular detection of the BCR::ABL1 transcription is a required factor for CML diagnosis, and its molecular quantification is essential for assessing treatment options and clinical approaches. In the CML molecular context, point mutations on the ABL1 gene are also a challenge for clinical guidelines because several mutations are responsible for tyrosine kinase inhibitor resistance, indicating that a change may be necessary in the treatment protocol. So far, the European LeukemiaNet and the National Comprehensive Cancer Network (NCCN) have presented international guidelines on CML molecular approaches, especially those related to BCR::ABL1 expression. In this study, we show almost three years' worth of data regarding the clinical treatment of CML patients at the Erasto Gaertner Hospital, Curitiba, Brazil. These data primarily comprise 155 patients and 532 clinical samples. BCR::ABL1 quantification by a duplex-one-step RT-qPCR and ABL1 mutations detection were conducted. Furthermore, digital PCR for both BCR::ABL1 expression and ABL1 mutations were conducted in a sub-cohort. This manuscript describes and discusses the clinical importance and relevance of molecular biology testing in Brazilian CML patients, demonstrating its cost-effectiveness.
Asunto(s)
Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Brasil , Proteínas de Fusión bcr-abl/genética , Resistencia a Antineoplásicos/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/diagnóstico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Translocación GenéticaRESUMEN
Long noncoding RNAs (lncRNAs) are a class of non-coding RNAs that contain more than 200 nucleotides and exhibit a versatile regulatory capacity. Genomic alterations in lncRNAs have already been investigated in several complex diseases, including breast cancer (BC). BC is a highly heterogeneous disease and is the most prevalent cancer type among women worldwide. Single nucleotide polymorphisms (SNPs) in lncRNA regions appear to have an important role in BC susceptibility; however, little is known about lncRNA-SNPs in the Brazilian population. This study used Brazilian tumor samples to identify lncRNA-SNPs with a biological role in BC development. We applied a bioinformatic approach intersecting lncRNAs that are differentially expressed in BC tumor samples using The Cancer Genome Atlas (TCGA) cohort data and looked for lncRNAs with SNPs associated with BC in the Genome Wide Association Studies (GWAS) catalog. We highlight four lncRNA-SNPs-rs3803662, rs4415084, rs4784227, and rs7716600-which were genotyped in Brazilian BC samples in a case-control study. The SNPs rs4415084 and rs7716600 were associated with BC development at higher risk. These SNPs were also associated with progesterone status and lymph node status, respectively. The rs3803662/rs4784227 haplotype GT was associated with BC risk. These genomic alterations were also evaluated in light of the lncRNA's secondary structure and gain/loss of miRNA binding sites to better understand its biological functions. We emphasize that our bioinformatics approach could find lncRNA-SNPs with a potential biological role in BC development and that lncRNA-SNPs should be more deeply investigated in a highly heterogeneous disease population.
Asunto(s)
Neoplasias de la Mama , ARN Largo no Codificante , Humanos , Femenino , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias de la Mama/genética , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Estudios de Casos y Controles , BrasilRESUMEN
A lack of reliable early diagnostic tools represents a major challenge in the management of pancreatic cancer (PCa), as the disease is often only identified after it reaches an advanced stage. This highlights the urgent need to identify biomarkers that can be used for the early detection, staging, treatment monitoring, and prognosis of PCa. A novel approach called liquid biopsy has emerged in recent years, which is a less- or non-invasive procedure since it focuses on plasmatic biomarkers such as DNA and RNA. In the blood of patients with cancer, circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs) have been identified such as DNA, mRNA, and non-coding RNA (miRNA and lncRNA). The presence of these molecules encouraged researchers to investigate their potential as biomarkers. In this article, we focused on circulating cfNAs as plasmatic biomarkers of PCa and analyzed their advantages compared to traditional biopsy methods.
RESUMEN
Leukemia is a type of cancer that affects white blood cells. In this disease, immature blood cells undergo genetic mutations, leading to excessive replication and reduced cell death compared to healthy cells. In cancer, there may be the activation of oncogenes and the deactivation of tumor suppressor genes that control certain cellular functions. Despite the undeniable contribution to the patient's recovery, conventional cancer treatments may have some not-so-beneficial effects. In this case, gene therapy appears as an alternative to classical treatments. Gene therapy delivers genetic material to cells to replace or modify dysfunctional genes, a safe method for neoplasms. One of the types of nucleic acids explored in gene therapy is microRNA (miRNA), a group of endogenous, non-proteincoding, small single-stranded RNA molecules involved in the regulation of gene expression, cell division, differentiation, angiogenesis, migration, apoptosis, and carcinogenesis. This review aims to bring together the most recent advances found in the literature on cancer gene therapy based on microRNAs in the oncological context, focusing on leukemia.
Asunto(s)
Leucemia , MicroARNs , Neoplasias , Humanos , MicroARNs/genética , MicroARNs/uso terapéutico , MicroARNs/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/patología , Leucemia/genética , Leucemia/terapia , Terapia Genética/métodos , Modelos Teóricos , Regulación Neoplásica de la Expresión GénicaRESUMEN
Growing evidence suggests that metavirome changes could be associated increased risk for malignant cell transformation. Considering Viruses have been proposed as factors for prostate cancer induction. The objective of this study was to examine the composition of the plasma metavirome of patients with prostate cancer. Blood samples were obtained from 49 male patients with primary prostate adenocarcinoma. Thirty blood donors were included as a control group. The obtained next-generation sequencing data were analyzed using a bioinformatic pipeline for virus metagenomics. Viral reads with higher abundance were assembled in contigs and analyzed taxonomically. Viral agents of interest were also confirmed by qPCR. Anelloviruses and the Human Pegivirus-1 (HPgV-1) were the most abundant component of plasma metavirome. Clinically important viruses like hepatitis C virus (HCV), cytomegalovirus and human adenovirus type C were also identified. In comparison, the blood donor virome was exclusively composed of torque teno virus types (TTV) types. The performed HPgV-1 and HCV phylogeny revealed that these viruses belong to commonly detected in Brazil genotypes. Our study sheds light on the plasma viral abundance in patients with prostatic cancer. The obtained viral diversity allowed us to separate the patients and controls, probably suggesting that malignant processes may influence virome composition. More complex and multiple approach investigations are necessary to examine the likely causal relationship between metavirome and its nvolvement in prostate cancer.
RESUMEN
Molecular biology is a widely used and widespread technique in research and as a laboratory diagnostic tool, aiming to investigate targets of interest from the obtainment, identification, and analysis of genetic material. In this context, methods, such as Polymerase Chain Reaction (PCR), Reverse Transcription Polymerase Chain Reaction (RT-PCR), real-time PCR, loopmediated isothermal amplification (LAMP), and loop-mediated isothermal amplification with reverse transcription (RT-LAMP), can be cited. Such methods use enzymes, buffers, and thermosensitive reagents, which require specific storage conditions. In an attempt to solve this problem, the lyophilization procedure (dehydration process by sublimation) can be applied, aiming to preserve and prolong the useful life of the reaction components in cases of temperature variation. In this review, we present a synthesis of the lyophilization process, describing the events of each step of the procedure and providing general information about the technique. Moreover, we selected lyophilization protocols found in the literature, paying attention to the conditions chosen by the authors for each step of the procedure, and structured the main data in tables, facilitating access to information for researchers who need material to produce new functional protocols.
Asunto(s)
Liofilización , Biología Molecular , Humanos , Biología Molecular/instrumentación , Biología Molecular/métodos , Agua/química , Liofilización/instrumentación , Liofilización/métodos , Reacción en Cadena de la Polimerasa/instrumentación , Reacción en Cadena de la Polimerasa/métodos , Criopreservación , Sistemas de Atención de PuntoRESUMEN
Seroconversion rates were compared between oncological and nononcological patients infected with SARS-CoV-2 during a 14-day hospitalization time. All COVID-19 non-oncological and solid malignancies patients reached 100% seroconversion at day 14, while less than half of the hematological patients were seroconverted at the same time point. Despite the limited number and variability of the patient's cohort, we conclude that there is a delayed seroconversion in the hematological malignancies group, which may be linked to changes in the hematological parameters, immune suppression and/or oncological treatments that are typically associated with these patients.
Asunto(s)
COVID-19 , Neoplasias , Anticuerpos Antivirales , Humanos , Inmunidad , SARS-CoV-2RESUMEN
Pancreatic cancer represents one of the leading causes of oncological death worldwide. A combination of pancreatic cancer aggressiveness and late diagnosis are key factors leading to a low survival rate and treatment inefficiency, and early diagnosis is pursued as a critical factor for pancreatic cancer. In this context, plasma microRNAs are emerging as promising players due to their non-invasive and practical usage in oncological diagnosis and prognosis. Recent studies have showed some miRNAs associated with pancreatic cancer subtypes, or with stages of the disease. Here we demonstrate plasma exosome-derived microRNA expression in pancreatic cancer patients and healthy individuals from Brazilian patients. Using plasma of 65 pancreatic cancer patients and 78 healthy controls, plasma exosomes were isolated and miRNAs miR-27b, miR-125b-3p, miR-122-5p, miR-21-5p, miR-221-3p, miR-19b, and miR-205-5p were quantified by RT-qPCR. We found that miR-125b-3p, miR-122-5p, and miR-205-5p were statistically overexpressed in the plasma exosomes of pancreatic cancer patients compared to healthy controls. Moreover, miR-205-5p was significantly overexpressed in European descendants, in patients with tumor progression and in those who died from the disease, and diagnostic ability by ROC curve was 0.86. Therefore, we demonstrate that these three microRNAs are potential plasma exosome-derived non-invasive biomarkers for the diagnosis and prognosis of Brazilian pancreatic cancer, demonstrating the importance of different populations and epidemiological bias.
Asunto(s)
Exosomas , MicroARNs , Neoplasias Pancreáticas , Biomarcadores/metabolismo , Biomarcadores de Tumor/metabolismo , Brasil , Detección Precoz del Cáncer , Exosomas/genética , Exosomas/metabolismo , Humanos , MicroARNs/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Pronóstico , Neoplasias PancreáticasRESUMEN
This work describes the development of a Point-of-Care (POC) Lab-on-a-Chip (LOC) instrument for diagnosis of SARS-CoV-2 by Reverse-Transcription Loop-mediated isothermal amplification (RT-LAMP). The hardware is based on a Raspberry Pi computer ($35), a video camera, an Arduino Nano microcontroller, a printed circuit board as a heater and a 3D printed housing. The chips were manufactured in polymethyl methacrylate (PMMA) using a CO2 laser cutting machine and sealed with a PCR optic plastic film. The chip temperature is precisely controlled by a proportional-integral-derivative (PID) algorithm. During the RT-LAMP amplifications the chip was maintained at â¼ (65.0 ± 0.1) °C for 25 minutes and 5 minutes cooling down, totaling a 30 minutes of reaction .The software interpretation occurs in less than a second. The chip design has four 25 µL chambers, two for clinical samples and two for positive and negative control-samples. The RT-LAMP master mix solution added in the chip chambers contains the pH indicator Phenol Red, that is pink (for pH â¼ 8.0) before amplification and becomes yellow (pH â¼ 6.0) if the genetic material is amplified. The RT-LAMP SARS-CoV-2 diagnostic was made by color image recognition using the OpenCV machine vision software library. The software was programmed to automatically distinguish the HSV color parameter distribution in each one of the four chip chambers. The instrument was successfully tested for SARS-CoV-2 diagnosis, in 22 clinic samples, 11 positives and 11 negatives, achieving an assertiveness of 86% when compared to the results obtained by RT-LAMP standard reactions performed in conventional PCR equipment.
RESUMEN
Screening efforts and genomic surveillance are essential tools to evaluate the course of the COVID-19 pandemic and assist the public healthcare system in dealing with an increasing number of infections. For the analysis of COVID-19 cases scenarios in Curitiba, Paraná, Brazil, we performed a diagnosis of positive cases, coupled with genotyping, for symptomatic and asymptomatic members of the Federal University of Paraná. We achieved over 1000 samples using RT-qPCR for diagnosis. The posterior genotyping allowed us to observe differences in the spread of strains in Curitiba, Brazil. The Delta variant was not associated with an infection wave, whereas the rapid Omicron variant spread became dominant in less than one month. We also evaluated the general vaccination coverage in the state, observing a striking reduction in lethality correlated to the vaccinated fraction of the population; although lower lethality rates were not much affected by the Omicron variant wave, the same effect was not translated in the number of infections. In summary, our results provide a general overview of the pandemic's course in Paraná State and how there was reduction in lethality after a combination of multiple infection waves and a large-scale vaccination program.
Asunto(s)
COVID-19 , SARS-CoV-2 , Brasil/epidemiología , COVID-19/epidemiología , Humanos , Pandemias , SARS-CoV-2/genéticaRESUMEN
Immunological assays to detect SARS-CoV-2 Spike Receptor Binding Domain (RBD) antigen seroconversion in humans are important tools to monitor the levels of protecting antibodies in the population in response to infection and/or immunization. Here we describe a simple, low cost, and high throughput Ni2+ magnetic bead immunoassay to detect human IgG reactive to Spike S1 RBD Receptor Binding Domain produced in Escherichia coli. A 6xHis-tagged Spike S1 RBD was expressed in E. coli and purified by affinity chromatography. The protein was mobilized on the surface of Ni2+ magnetic beads and used to investigate the presence of reactive IgG in the serum obtained from pre-pandemic and COVID-19 confirmed cases. The method was validated with a cohort of 290 samples and an area under the receiver operating characteristic curve of 0.94 was obtained. The method was operated with > 82% sensitivity at 98% specificity and was also able to track human IgG raised in response to vaccination with Comirnaty at > 85% sensitivity. The IgG signal obtained with the described method was well-correlated with the signal obtained when pre fusion Spike produced in HEK cell lines was used as antigen. This novel low-cost and high throughput immunoassay may act as an important tool to investigate protecting IgG antibodies against SARS-CoV-2 in the human population.