Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Science ; 375(6586): 1275-1281, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35298255

RESUMEN

Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Ecosistema , Trifolium/fisiología , Urbanización , Ciudades , Genes de Plantas , Genoma de Planta , Cianuro de Hidrógeno/metabolismo , Población Rural , Trifolium/genética
2.
Appl Plant Sci ; 2(3)2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25202607

RESUMEN

PREMISE OF THE STUDY: Microsatellite primers were developed for Orthophytum ophiuroides, a rupicolous bromeliad species endemic to neotropical rocky fields. These microsatellite loci will be used to investigate population differentiation and species cohesion in such fragmented environments. The loci were tested for cross-amplification in related bromeliad species. • METHODS AND RESULTS: Eleven polymorphic microsatellite markers were isolated and characterized from an enriched library of O. ophiuroides. The loci were tested on 42 individuals from two populations of this species. The number of alleles per locus ranged from three to nine and the expected and observed heterozygosities ranged from 0.167 to 0.870 and from 0.369 to 0.958, respectively. Seven loci successfully amplified in other related bromeliad species. • CONCLUSIONS: Our results suggest that the microsatellite loci developed here will be useful to assess genetic diversity and gene flow in O. ophiuroides for the investigation of population differentiation and species cohesion in neotropical mountainous habitats.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA