Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(3): e0298196, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38446760

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal human motor neuron disease leading to muscle atrophy and paralysis. Mutations in superoxide dismutase 1 (SOD1) are associated with familial ALS (fALS). The SOD1 mutants in ALS have a toxic-gain of function by destabilizing the functional SOD1 homodimer, consequently inducing fibril-like aggregation with a cytotoxic non-native trimer intermediate. Therefore, reducing SOD1 oligomerization via chemical modulators is an optimal therapy in ALS. Here, we report the discovery of Phialomustin-B, an unsaturated secondary metabolite from the endophytic fungus Phialophora mustea, as a modulator of SOD1 aggregation. The crystal structure of the SOD1-Phialomustin complex refined to 1.90 Å resolution demonstrated for the first time that the ligand binds to the dimer interface and the lateral region near the electrostatic loop. The aggregation analyses of SOD1WT and the disease mutant SOD1A4V revealed that Phialomustin-B reduces cytotoxic trimerization. We propose that Phialomustin-B is a potent lead molecule with therapeutic potential in fALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Citoesqueleto , Atrofia Muscular
2.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 531-544, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37204819

RESUMEN

Aggregates of the antioxidant superoxide dismutase 1 (SOD1) are one of the major contributors to the pathogenesis of amyotrophic lateral sclerosis (ALS). Mutations in SOD1 lead to an unstable structure and aggregation that perturbs the balance of reactive oxygen species in cells. Oxidation damage to the solvent-exposed Trp32 also causes aggregation of SOD1. Here, the FDA-approved antipsychotic drug paliperidone is identified to interact with Trp32 of SOD1 by structure-based pharmacophore mapping and crystallographic studies. Paliperidone is used for the treatment of schizophrenia. The crystal structure of the complex with SOD1, refined to 2.1 Šresolution, revealed that the ligand binds to the SOD1 ß-barrel in the ß-strand 2 and 3 regions, which are known to scaffold SOD1 fibrillation. The drug also makes substantial π-π interaction with Trp32. Microscale thermophoresis studies confirm significant binding affinity of the compound, suggesting that the ligand can inhibit or prevent tryptophan oxidation. Thus, the antipsychotic drug paliperidone or a derivative may avert SOD1 aggregation and can be used as a lead for ALS drug development.


Asunto(s)
Esclerosis Amiotrófica Lateral , Antipsicóticos , Humanos , Superóxido Dismutasa-1/química , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Palmitato de Paliperidona/uso terapéutico , Antipsicóticos/uso terapéutico , Ligandos , Mutación
3.
J Biomol Struct Dyn ; 41(22): 12703-12713, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36744543

RESUMEN

α-Synuclein (αSyn) aggregation is associated with Parkinson's disease (PD). The region αSyn36-42 acts as the nucleation 'master controller' and αSyn1-12 as a 'secondary nucleation site'. They drive monomeric αSyn to aggregation. Small molecules targeting these motifs are promising for disease-modifying therapy. Using computational techniques, we screened thirty phytochemicals for αSyn binding. The top three compounds were experimentally validated for their binding affinity. Amongst them, celastrol showed high binding affinity. NMR analysis confirmed stable αSyn-celastrol interactions involving several residues in the N-terminus and NAC regions but not in the C-terminal tail. Importantly, celastrol interacted extensively with the key motifs that drive αSyn aggregation. Thioflavin-T assay indicated that celastrol reduced αSyn aggregation. Thus, celastrol holds promise as a potent drug candidate for PD.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Enfermedad de Parkinson/metabolismo , Triterpenos Pentacíclicos
4.
J Biomol Struct Dyn ; 40(20): 10033-10044, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34121619

RESUMEN

Sirtuin-6 (SIRT6), class III family of deacetylase regulates several biological functions, including transcriptional repression, telomere maintenance, and DNA repair. It is unique among sirtuin family members with diverse enzymatic functions: mono-ADP-ribosylase, deacetylase and defatty-acylase. The studies so far implicated SIRT6 role in lifespan extension, tumor suppression, and is considered as an attractive drug target for aging-related disease. In this study, we have carried out in silico screening for human SIRT6 modulators using NCI Diversity Set III library, molecular dynamic (MD) simulations to analyze the protein-ligand interaction, and validated their binding-affinity (Kd) using MicroScale Thermophoresis. This study yielded two novel compounds, ((3Z)-3-((4-(dimethylamino)phenyl)methylidene)-5-(5,6,7,8-tetrahydronaphthalen-2-yl)furan-2-one and 5-phenyl-2-(5-phenyl-2,3-dihydro-1,3-benzoxazol-2-yl)-2,3-dihydro-1,3-benzoxazole showing high-affinity interaction for SIRT6. The structural analysis from MD simulation suggests both compounds might act as substrate-analogs or mimic the nicotinamide binding. On considering the uniqueness of SIRT6 substrate binding acyl channel among sirtuin family member, binding of both compounds to the above site suggesting their specificity for SIRT6 isoform. Therefore, it may form the basis for the development of potential modulators for human SIRT6.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Sirtuinas , Humanos , Sirtuinas/química , Ligandos , Reparación del ADN
5.
Mol Divers ; 25(3): 1679-1700, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32737682

RESUMEN

Leishmaniasis is one of the most neglected tropical diseases that demand immediate attention to the identification of new drug targets and effective drug candidates. The present study demonstrates the possibility of using threonine synthase (TS) as a putative drug target in leishmaniasis disease management. We report the construction of an effective homology model of the enzyme that appears to be structurally as well as functionally well conserved. The 200 nanosecond molecular dynamics data on TS with and without pyridoxal phosphate (PLP) shed light on mechanistic details of PLP-induced conformational changes. Moreover, we address some important structural and dynamic interactions in the PLP binding region of TS that are in good agreement with previously speculated crystallographic estimations. Additionally, after screening more than 44,000 compounds, we propose 10 putative inhibitor candidates for TS based on virtual screening data and refined Molecular Mechanics Generalized Born Surface Area calculations. We expect that structural and functional dynamics data disclosed in this study will help initiate experimental endeavors toward establishing TS as an effective antileishmanial drug target.


Asunto(s)
Antiprotozoarios/química , Liasas de Carbono-Oxígeno/química , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Secuencia de Aminoácidos , Antiprotozoarios/farmacología , Sitios de Unión , Liasas de Carbono-Oxígeno/antagonistas & inhibidores , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/farmacología , Leishmania major/enzimología , Conformación Molecular , Unión Proteica , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad
6.
J Biosci ; 452020.
Artículo en Inglés | MEDLINE | ID: mdl-33184246

RESUMEN

Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is an emerging new viral pathogen that causes severe respiratory disease. SARS-CoV-2 is responsible for the outbreak of COVID-19 pandemic worldwide. As there are no confirmed antiviral drugs or vaccines currently available for the treatment of COVID-19, discovering potent inhibitors or vaccines are urgently required for the benefit of humanity. The glycosylated Spike protein (S-protein) directly interacts with human angiotensin-converting enzyme 2 (ACE2) receptor through the receptor-binding domain (RBD) of S-protein. As the S-protein is exposed to the surface and is essential for entry into the host, the S-protein can be considered as a first-line therapeutic target for antiviral therapy and vaccine development. In silico screening, docking, and molecular dynamics simulation studies were performed to identify repurposing drugs using DrugBank and PubChem library against the RBD of S-protein. The study identified a laxative drug, Bisoxatin (DB09219), which is used for the treatment of constipation and preparation of the colon for surgical procedures. It binds nicely at the S-protein-ACE2 interface by making substantial π-π interactions with Tyr505 in the 'Site 1' hook region of RBD and hydrophilic interactions with Glu406, Ser494, and Thr500. Bisoxatin consistently binds to the protein throughout the 100 ns simulation. Taken together, we propose that the discovered molecule, Bisoxatin may be a promising repurposable drug molecule to develop new chemical libraries for inhibiting SARS-CoV-2 entry into the host.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Reposicionamiento de Medicamentos , Oxazinas/farmacología , Neumonía Viral/tratamiento farmacológico , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Antivirales/química , Antivirales/uso terapéutico , COVID-19 , Infecciones por Coronavirus/virología , Humanos , Laxativos/química , Laxativos/uso terapéutico , Simulación de Dinámica Molecular , Pandemias , Neumonía Viral/virología , Conformación Proteica , SARS-CoV-2
7.
J Mol Model ; 26(8): 218, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32720228

RESUMEN

Leishmaniasis is a tropical neglected disease that imposes major health concerns in many endemic countries worldwide and requires urgent attention to the identification of new drug targets as well as drug candidates. In the current study, we propose homoserine kinase (HSK) inhibition as a strategy to induce pathogen mortality via generating threonine deficiency. We introduce a homology-based molecular model of leishmanial HSK that appears to possess all conserved structural as well as functional features in the GHMP kinase family. Furthermore, 200 ns molecular dynamics data of the enzyme in open and closed state attempts to provide the mechanistic details involved in the substrate as well as phosphate binding to this enzyme. We discuss the structural and functional significance of movements involved in various loops (motif 1, 2, 3) and lips (upper and lower) in the transition of leishmanial HSK from closed to open state. Virtual screening data of more than 40,000 compounds from the present investigation tries to identify a few potential HSK inhibitors that possess important features to act as efficient HSK inhibitors. These compounds can be considered an effective starting point for the identification of novel drug-like scaffolds. We hope the structural wealth that is offered in this report will be utilized in designing competent experimental and therapeutic interventions for leishmaniasis management. Graphical abstract.


Asunto(s)
Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Tripanocidas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Catálisis , Secuencia Conservada , Inhibidores Enzimáticos/farmacología , Humanos , Leishmania/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Unión Proteica , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , Tripanocidas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA