Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Cells ; 12(4)2023 02 10.
Article En | MEDLINE | ID: mdl-36831244

In this study, we attempted to find genetic variants affecting gene expression (eQTL = expression Quantitative Trait Loci) in the human placenta in normal and pathological situations. The analysis of gene expression in placental diseases (Pre-eclampsia and Intra-Uterine Growth Restriction) is hindered by the fact that diseased placental tissue samples are generally taken at earlier gestations compared to control samples. The difference in gestational age is considered a major confounding factor in the transcriptome regulation of the placenta. To alleviate this significant problem, we propose here a novel approach to pinpoint disease-specific cis-eQTLs. By statistical correction for gestational age at sampling as well as other confounding/surrogate variables systematically searched and identified, we found 43 e-genes for which proximal SNPs influence expression level. Then, we performed the analysis again, removing the disease status from the covariates, and we identified 54 e-genes, 16 of which are identified de novo and, thus, possibly related to placental disease. We found a highly significant overlap with previous studies for the list of 43 e-genes, validating our methodology and findings. Among the 16 disease-specific e-genes, several are intrinsic to trophoblast biology and, therefore, constitute novel targets of interest to better characterize placental pathology and its varied clinical consequences. The approach that we used may also be applied to the study of other human diseases where confounding factors have hampered a better understanding of the pathology.


Placenta , Trophoblasts , Humans , Pregnancy , Female , Placenta/metabolism , Trophoblasts/metabolism , Transcriptome , Gene Expression Regulation , Genomics
2.
Int J Mol Sci ; 23(24)2022 Dec 14.
Article En | MEDLINE | ID: mdl-36555567

CD24 is a mucin-like immunosuppressing glycoprotein whose levels increase during pregnancy and decrease in the syncytio- and cytotrophoblasts in early and preterm preeclampsia. We used two modified cell lines that mimic in vitro features of preeclampsia to identify if this phenomenon could be reproduced. Our model was the immortalized placental-derived BeWo and JEG-3 cell lines that overexpress the STOX1 A/B transcription factor gene that was discovered in familial forms of preeclampsia. BeWo and JEG-3 cells stably transduced with the two major isoforms of STOX1-A/B or by an empty vector (control), were propagated, harvested, and analyzed. CD24 mRNA expression was determined by quantitative real-time polymerase nuclear chain reaction (qRT-PCR). CD24 protein levels were determined by Western blots. In STOX1-A/B overexpressing in BeWo cells, CD24 mRNA was downregulated by 91 and 85%, respectively, compared to the control, and by 30% and 74%, respectively in JEG-3 cells. A 67% and 82% decrease in CD24 protein level was determined by immunoblot in BeWo overexpressing STOX1-A/B, respectively, while the reduction in JEG-3 cells was between 47 and 62%. The immortalized BeWo and JEG-3 cell lines overexpressing STOX1-A/B had reduced CD24. Although both cell lines were affected, BeWo appears to be more susceptible to downregulation by STOX-1 than JEG-3, potentially because of their different cell origin and properties. These results strengthen the in vivo results of reduced CD24 levels found in early and preterm preeclampsia. Accordingly, it implies the importance of the reduced immune tolerance in preeclampsia, which was already demonstrated in vivo in the STOX1-A/B model of preeclampsia, and is now implied in the in vitro STOX-1 model, a subject that warrants further investigations.


Pre-Eclampsia , Trophoblasts , Humans , Infant, Newborn , Pregnancy , Female , Trophoblasts/metabolism , Placenta/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Cell Line, Tumor , RNA, Messenger/metabolism , CD24 Antigen/genetics , CD24 Antigen/metabolism , Carrier Proteins/metabolism
3.
Antioxidants (Basel) ; 11(3)2022 Mar 18.
Article En | MEDLINE | ID: mdl-35326235

Oxidative stress is associated with a myriad of diseases including pregnancy pathologies with long-term cardiovascular repercussions for both the mother and baby. Aberrant redox signalling coupled with deficient antioxidant defence leads to chronic molecular impairment. Abnormal placentation has been considered the primary source for reactive species; however, placental dysfunction has been deemed secondary to maternal cardiovascular maladaptation in pregnancy. While various therapeutic interventions, aimed at combating deregulated oxidative stress during pregnancy have shown promise in experimental models, they often result as inconclusive or detrimental in clinical trials, warranting the need for further research to identify candidates. The strengths and limitations of current experimental methods in redox research are discussed. Assessment of redox status and oxidative stress in experimental models and in clinical practice remains challenging; the state-of-the-art of computational models in this field is presented in this review, comparing static and dynamic models which provide functional information such as protein-protein interactions, as well as the impact of changes in molecular species on the redox-status of the system, respectively. Enhanced knowledge of redox biology in during pregnancy through computational modelling such as generation of Systems Biology Markup Language model which integrates existing models to a larger network in the context of placenta physiology.

4.
J Mol Cell Cardiol ; 166: 23-35, 2022 05.
Article En | MEDLINE | ID: mdl-35114252

Atrial fibrillation (AF) affects over 1% of the population and is a leading cause of stroke and heart failure in the elderly. A feared side effect of sodium channel blocker therapy, ventricular pro-arrhythmia, appears to be relatively rare in patients with AF. The biophysical reasons for this relative safety of sodium blockers are not known. Our data demonstrates intrinsic differences between atrial and ventricular cardiac voltage-gated sodium currents (INa), leading to reduced maximum upstroke velocity of action potential and slower conduction, in left atria compared to ventricle. Reduced atrial INa is only detected at physiological membrane potentials and is driven by alterations in sodium channel biophysical properties and not by NaV1.5 protein expression. Flecainide displayed greater inhibition of atrial INa, greater reduction of maximum upstroke velocity of action potential, and slowed conduction in atrial cells and tissue. Our work highlights differences in biophysical properties of sodium channels in left atria and ventricles and their response to flecainide. These differences can explain the relative safety of sodium channel blocker therapy in patients with atrial fibrillation.


Atrial Fibrillation , Flecainide , Action Potentials , Aged , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Atrial Fibrillation/metabolism , Flecainide/metabolism , Flecainide/pharmacology , Flecainide/therapeutic use , Heart Atria/metabolism , Humans , Sodium/metabolism , Sodium Channel Blockers/pharmacology , Sodium Channels/metabolism
5.
Front Cell Dev Biol ; 9: 633937, 2021.
Article En | MEDLINE | ID: mdl-34055770

A bioinformatics screen for non-coding genes was performed from microarrays analyzing on the one hand trophoblast fusion in the BeWo cell model, and on the other hand, placental diseases (preeclampsia and Intra-Uterine Growth Restriction). Intersecting the deregulated genes allowed to identify two miRNA (mir193b and miR365a) and one long non-coding RNA (UCA1) that are pivotal for trophoblast fusion, and deregulated in placental diseases. We show that miR-193b is a hub for the down-regulation of 135 cell targets mainly involved in cell cycle progression and energy usage/nutrient transport. UCA1 was explored by siRNA knock-down in the BeWo cell model. We show that its down-regulation is associated with the deregulation of important trophoblast physiology genes, involved in differentiation, proliferation, oxidative stress, vacuolization, membrane repair and endocrine production. Overall, UCA1 knockdown leads to an incomplete gene expression profile modification of trophoblast cells when they are induced to fuse into syncytiotrophoblast. Then we performed the same type of analysis in cells overexpressing one of the two major isoforms of the STOX1 transcription factor, STOX1A and STOX1B (associated previously to impaired trophoblast fusion). We could show that when STOX1B is abundant, the effects of UCA1 down-regulation on forskolin response are alleviated.

6.
Heart Rhythm ; 18(7): 1212-1220, 2021 07.
Article En | MEDLINE | ID: mdl-33737232

BACKGROUND: Although atrial fibrillation ablation is increasingly used for rhythm control therapy, antiarrhythmic drugs (AADs) are commonly used, either alone or in combination with ablation. The effectiveness of AADs is highly variable. Previous work from our group suggests that alterations in atrial resting membrane potential (RMP) induced by low Pitx2 expression could explain the variable effect of flecainide. OBJECTIVE: The purpose of this study was to assess whether alterations in atrial/cardiac RMP modify the effectiveness of multiple clinically used AADs. METHODS: The sodium channel blocking effects of propafenone (300 nM, 1 µM), flecainide (1 µM), and dronedarone (5 µM, 10 µM) were measured in human stem cell-derived cardiac myocytes, HEK293 expressing human NaV1.5, primary murine atrial cardiac myocytes, and murine hearts with reduced Pitx2c. RESULTS: A more positive atrial RMP delayed INa recovery, slowed channel inactivation, and decreased peak action potential (AP) upstroke velocity. All 3 AADs displayed enhanced sodium channel block at more positive atrial RMPs. Dronedarone was the most sensitive to changes in atrial RMP. Dronedarone caused greater reductions in AP amplitude and peak AP upstroke velocity at more positive RMPs. Dronedarone evoked greater prolongation of the atrial effective refractory period and postrepolarization refractoriness in murine Langendorff-perfused Pitx2c+/- hearts, which have a more positive RMP compared to wild type. CONCLUSION: Atrial RMP modifies the effectiveness of several clinically used AADs. Dronedarone is more sensitive to changes in atrial RMP than flecainide or propafenone. Identifying and modifying atrial RMP may offer a novel approach to enhancing the effectiveness of AADs or personalizing AAD selection.


Atrial Fibrillation/metabolism , Dronedarone/therapeutic use , Flecainide/therapeutic use , Heart Atria/metabolism , Membrane Potentials/drug effects , Propafenone/therapeutic use , Sodium/metabolism , Action Potentials/drug effects , Animals , Anti-Arrhythmia Agents/therapeutic use , Atrial Fibrillation/drug therapy , Atrial Fibrillation/physiopathology , Disease Models, Animal , Female , Heart Atria/physiopathology , Male , Mice , Voltage-Gated Sodium Channel Blockers/therapeutic use
7.
Hum Genet ; 140(5): 827-848, 2021 May.
Article En | MEDLINE | ID: mdl-33433680

Two major obstetric diseases, preeclampsia (PE), a pregnancy-induced endothelial dysfunction leading to hypertension and proteinuria, and intra-uterine growth-restriction (IUGR), a failure of the fetus to acquire its normal growth, are generally triggered by placental dysfunction. Many studies have evaluated gene expression deregulations in these diseases, but none has tackled systematically the role of alternative splicing. In the present study, we show that alternative splicing is an essential feature of placental diseases, affecting 1060 and 1409 genes in PE vs controls and IUGR vs controls, respectively, many of those involved in placental function. While in IUGR placentas, alternative splicing affects genes specifically related to pregnancy, in preeclamptic placentas, it impacts a mix of genes related to pregnancy and brain diseases. Also, alternative splicing variations can be detected at the individual level as sharp splicing differences between different placentas. We correlate these variations with genetic variants to define splicing Quantitative Trait Loci (sQTL) in the subset of the 48 genes the most strongly alternatively spliced in placental diseases. We show that alternative splicing is at least partly piloted by genetic variants located either in cis (52 QTL identified) or in trans (52 QTL identified). In particular, we found four chromosomal regions that impact the splicing of genes in the placenta. The present work provides a new vision of placental gene expression regulation that warrants further studies.


Alternative Splicing/genetics , Fetal Growth Retardation/genetics , Placenta/pathology , Pre-Eclampsia/genetics , Female , Fetal Growth Retardation/pathology , Humans , Pre-Eclampsia/pathology , Pregnancy , Pregnancy Complications/genetics , Quantitative Trait Loci/genetics
8.
iScience ; 23(5): 101086, 2020 May 22.
Article En | MEDLINE | ID: mdl-32371375

STOX1 is a transcription factor involved in preeclampsia and Alzheimer disease. We show that the knock-down of the gene induces rather mild effect on gene expression in trophoblast cell lines (BeWo). We identified binding sites of STOX1 shared by the two major isoforms, STOX1A and STOX1B. Profiling gene expression of cells overexpressing either STOX1A or STOX1B, we identified genes downregulated by both isoforms, with a STOX1 binding site in their promoters. Among those, STOX1-induced Annexin A1 downregulation led to abolished membrane repair in BeWo cells. By contrast, overexpression of STOX1A or B has opposite effects on trophoblast fusion (acceleration and inhibition, respectively) accompanied by syncytin genes deregulation. Also, STOX1A overexpression led to abnormal regulation of oxidative and nitrosative stress. In sum, our work shows that STOX1 isoform imbalance is a cause of gene expression deregulation in the trophoblast, possibly leading to placental dysfunction and preeclampsia.

9.
J Biol Chem ; 295(36): 12822-12839, 2020 09 04.
Article En | MEDLINE | ID: mdl-32111735

A disintegrin and metalloprotease 10 (ADAM10) is a transmembrane protein essential for embryonic development, and its dysregulation underlies disorders such as cancer, Alzheimer's disease, and inflammation. ADAM10 is a "molecular scissor" that proteolytically cleaves the extracellular region from >100 substrates, including Notch, amyloid precursor protein, cadherins, growth factors, and chemokines. ADAM10 has been recently proposed to function as six distinct scissors with different substrates, depending on its association with one of six regulatory tetraspanins, termed TspanC8s. However, it remains unclear to what degree ADAM10 function critically depends on a TspanC8 partner, and a lack of monoclonal antibodies specific for most TspanC8s has hindered investigation of this question. To address this knowledge gap, here we designed an immunogen to generate the first monoclonal antibodies targeting Tspan15, a model TspanC8. The immunogen was created in an ADAM10-knockout mouse cell line stably overexpressing human Tspan15, because we hypothesized that expression in this cell line would expose epitopes that are normally blocked by ADAM10. Following immunization of mice, this immunogen strategy generated four Tspan15 antibodies. Using these antibodies, we show that endogenous Tspan15 and ADAM10 co-localize on the cell surface, that ADAM10 is the principal Tspan15-interacting protein, that endogenous Tspan15 expression requires ADAM10 in cell lines and primary cells, and that a synthetic ADAM10/Tspan15 fusion protein is a functional scissor. Furthermore, two of the four antibodies impaired ADAM10/Tspan15 activity. These findings suggest that Tspan15 directly interacts with ADAM10 in a functional scissor complex.


ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Membrane Proteins/metabolism , Multiprotein Complexes/metabolism , Tetraspanins/metabolism , A549 Cells , ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/genetics , Animals , HEK293 Cells , Humans , Jurkat Cells , Membrane Proteins/genetics , Mice , Mice, Knockout , Multiprotein Complexes/genetics , Tetraspanins/genetics
10.
Int J Mol Sci ; 20(11)2019 Jun 11.
Article En | MEDLINE | ID: mdl-31212604

In this review, we comprehensively present the function of epigenetic regulations in normal placental development as well as in a prominent disease of placental origin, preeclampsia (PE). We describe current progress concerning the impact of DNA methylation, non-coding RNA (with a special emphasis on long non-coding RNA (lncRNA) and microRNA (miRNA)) and more marginally histone post-translational modifications, in the processes leading to normal and abnormal placental function. We also explore the potential use of epigenetic marks circulating in the maternal blood flow as putative biomarkers able to prognosticate the onset of PE, as well as classifying it according to its severity. The correlation between epigenetic marks and impacts on gene expression is systematically evaluated for the different epigenetic marks analyzed.


Epigenesis, Genetic/genetics , Placentation/physiology , Pre-Eclampsia/metabolism , Female , Histones/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Placentation/genetics , Pre-Eclampsia/genetics , Pregnancy , Protein Processing, Post-Translational/genetics , Protein Processing, Post-Translational/physiology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
11.
EMBO Rep ; 17(12): 1872-1889, 2016 12.
Article En | MEDLINE | ID: mdl-27852622

MYC deregulation is common in human cancer and has a role in sustaining the aggressive cancer stem cell populations. MYC mediates a broad transcriptional response controlling normal biological programmes, but its activity is not clearly understood. We address MYC function in cancer stem cells through the inducible expression of Omomyc-a MYC-derived polypeptide interfering with MYC activity-taking as model the most lethal brain tumour, glioblastoma. Omomyc bridles the key cancer stemlike cell features and affects the tumour microenvironment, inhibiting angiogenesis. This occurs because Omomyc interferes with proper MYC localization and itself associates with the genome, with a preference for sites occupied by MYC This is accompanied by selective repression of master transcription factors for glioblastoma stemlike cell identity such as OLIG2, POU3F2, SOX2, upregulation of effectors of tumour suppression and differentiation such as ID4, MIAT, PTEN, and modulation of the expression of microRNAs that target molecules implicated in glioblastoma growth and invasion such as EGFR and ZEB1. Data support a novel view of MYC as a network stabilizer that strengthens the regulatory nodes of gene expression networks controlling cell phenotype and highlight Omomyc as model molecule for targeting cancer stem cells.


Gene Expression Regulation, Neoplastic , Genes, myc , Glioblastoma/genetics , Neoplastic Stem Cells/physiology , Peptide Fragments/genetics , Proto-Oncogene Proteins c-myc/genetics , Transcription Factors/genetics , Angiogenesis Inhibitors , Apoptosis , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation , Cell Proliferation , ErbB Receptors/genetics , Glioblastoma/physiopathology , Humans , Inhibitor of Differentiation Proteins/genetics , MicroRNAs/genetics , Nerve Tissue Proteins/genetics , Oligodendrocyte Transcription Factor 2 , Protein Binding , Transcriptional Activation , Tumor Microenvironment/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics
...