Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(11): e32599, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38961917

RESUMEN

Present scientific evidences about the biological activity and potential medical application of extracts derived from Marrubium friwaldskyanum Boiss. are limited. Therefore, our study was undertaken to define several main characteristics in this regard - in vitro cytotoxicity and antitumor properties, antibacterial activity and immunomodulatory potential. Extracts were obtained from different aerial parts of Marrubium friwaldskyanum - stems, leaves and flowers. The in vitro cytotoxicity and antitumor activity of the samples were evaluated by tetrazolium salt reduction tests and Neutral red uptake assays using four human cell lines (a normal fibroblastic and three adenocarcinoma cell lines/A549, HeLa, HT-29/) and by experiments with HT-29 tumor spheroids. Antibacterial activity toward Gram-negative (Escherichia coli) and Gram-positive (Bacillus cereus) species was assessed based on estimation of minimal inhibitory and minimal bactericidal concentrations as well as longitudinal studies on bacterial viability. Ex vivo assays with normal leukocytes were performed to define potential immunomodulatory activity of the extracts. Our results demonstrated selective antitumor activity of the extracts directed against colon adenocarcinoma HT-29 cells and cervical adenocarcinoma HeLa cell line. Metabolic activity of A549 lung adenocarcinoma cells was affected only by the sample derived from flowers. M. friwaldskyanum leaf and flower extracts showed the highest activity, which included reduction of HT-29 tumor spheroid growth and viability. The studied samples exhibited antibacterial activity against both bacterial species tested. Treatment with M. friwaldskyanum extracts affected specific leukocyte populations (HLA+, CD19+, CD11b+, CD25+ cells). These results demonstrate for the first time complex biological effects of extracts derived from M. friwaldskyanum and their potential to serve as a source of valuable compounds for the pharmaceutical industry.

2.
Adv Respir Med ; 91(6): 486-503, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37987298

RESUMEN

Allergic diseases are a global public health problem that affects up to 30% of the population in industrialized societies. More than 40% of allergic patients suffer from grass pollen allergy. Grass pollen allergens of group 1 and group 5 are the major allergens, since they induce allergic reactions in patients at high rates. In this study, we used immunoinformatic approaches to design an effective epitope-based vaccine against the grass group 1 allergens. After the alignment of all known pollen T-cell and B-cell epitopes from pollen allergens available in the public databases, the epitope GTKSEVEDVIPEGWKADTSY was identified as the most suitable for further analyses. The target sequence was subjected to immunoinformatics analyses to predict antigenic T-cell and B-cell epitopes. Population coverage analysis was performed for CD8+ and CD4+ T-cell epitopes. The selected T-cell epitopes (VEDVIPEGW and TKSEVEDVIPEGWKA) covered 78.87% and 98.20% of the global population and 84.57% and 99.86% of the population of Europe. Selected CD8+, CD4+ T-cell and B-cell epitopes have been validated by molecular docking analysis. CD8+ and CD4+ T-cell epitopes showed a very strong binding affinity to major histocompatibility complex (MHC) class I (MHC I) molecules and MHC class II (MHC II) molecules with global energy scores of -72.1 kcal/mol and -89.59 kcal/mol, respectively. The human IgE-Fc (PDB ID 4J4P) showed a lower affinity with B-cell epitope (ΔG = -34.4 kcal/mol), while the Phl p 2-specific human IgE Fab (PDB ID 2VXQ) had the lowest binding with the B-cell epitope (ΔG = -29.9 kcal/mol). Our immunoinformatics results demonstrated that the peptide GTKSEVEDVIPEGWKADTSY could stimulate the immune system and we performed ex vivo tests showed that the investigated epitope activates T cells isolated from patients with grass pollen allergy, but it is not recognized by IgE antibodies specific for grass pollen allergens. This confirms the importance of such studies to establish universal epitopes to serve as a basis for developing an effective vaccine against a particular group of allergens. Further in vivo studies are needed to validate the effectiveness of such a vaccine against grass pollen allergens.


Asunto(s)
Hipersensibilidad , Rinitis Alérgica Estacional , Vacunas , Humanos , Alérgenos , Poaceae/química , Poaceae/metabolismo , Epítopos de Linfocito B/química , Rinitis Alérgica Estacional/prevención & control , Epítopos de Linfocito T , Simulación del Acoplamiento Molecular , Secuencia de Aminoácidos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Inmunoglobulina E/química , Inmunoglobulina E/metabolismo
3.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37373251

RESUMEN

Subchondral bone that has intense communication with the articular cartilage might be a potential target for pharmacological treatment in the early stages of osteoarthritis (OA). Considering the emerging data about the role of adipokines in the pathogenesis of OA, the administration of drugs that influence their level is also intriguing. Metformin and alendronate were administered in mice with collagenase-induced OA (CIOA) as a monotherapy and in combination. Safranin O staining was used for the assessment of changes in subchondral bone and articular cartilage. Before and after treatment, serum levels of visfatin and biomarkers of cartilage turnover (CTX-II, MMP-13, and COMP) were assessed. In the current study, the combined administration of alendronate and metformin in mice with CIOA led to the protection against cartilage and subchondral bone damage. In mice with CIOA, metformin led to a decrease in visfatin level. In addition, treatment with metformin, alendronate, or their combination lowered the level of cartilage biomarkers (CTX-II and COMP), while the level of MMP-13 was not influenced. In conclusion, personalized combination treatment in OA according to clinical phenotype, especially in the early stages of the disease, might lead to the identification of a successful disease-modifying therapeutic protocol in OA.


Asunto(s)
Cartílago Articular , Metformina , Osteoartritis , Ratones , Animales , Alendronato/farmacología , Alendronato/uso terapéutico , Metformina/farmacología , Metformina/uso terapéutico , Nicotinamida Fosforribosiltransferasa , Osteoartritis/patología , Cartílago Articular/patología , Biomarcadores , Modelos Animales de Enfermedad
4.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36012429

RESUMEN

The etiology of most autoimmune diseases, including rheumatoid arthritis (RA), remains unclear. Both genetic and environmental factors are believed to be involved in pathogenesis. Molecular mimicry is considered one of the mechanisms for the occurrence of autoimmune diseases. The aim of the study was to determine whether the bacterial peptide L-ASNase67-81, which mimics the immunodominant T-cell epitope CII259-273, can induce T-cell reactivity in blood samples from RA patients and healthy subjects through molecular mimicry. Using bioinformatic molecular modeling methods, we first determined whether the L-ASNase67-81 peptide binds to the HLA-DRB1*04:01 molecule and whether the formed MHCII-peptide complex interacts with the corresponding T-cell receptor. To validate the obtained results, leukocytes isolated from early RA patients and healthy individuals were stimulated in vitro with L-ASNase67-81 and CII259-273 peptides as well as with bacterial L-asparaginase or human type II collagen (huCII). The activated T cells (CD4+CD154+) were analyzed by flow cytometry (FACS), and the levels of cytokines produced (IL-2, IL-17A/F, and IFN-γ) were measured by ELISA. Our in silico analyses showed that the bacterial peptide L-ASNase67-81 binds better to HLA-DRB1*04:01 compared to the immunodominant T-cell epitope CII259-273, mimicking its structure and localization in the binding groove of MHCII. Six contact points were involved in the molecular interaction of the peptide with the TCR. FACS data showed that after in vitro stimulation with the L-ASNase67-81 peptide, the percentage of activated T cells (CD154+CD4+) was significantly increased in both cell cultures isolated from ERA patients and those isolated from healthy individuals, as higher values were observed for the ERA group (9.92 ± 0.23 vs. 4.82 ± 0.22). Furthermore, the ELISA assays revealed that after stimulation with L-ASNase67-81, a significant increase in the production of the cytokines IL-2, IL-17A/F, and IFN-γ was detected in the group of ERA patients. Our data showed that the bacterial L-ASNase67-81 peptide can mimic the immunodominant T-cell epitope CII259-273 and activate HLA-DRB1*04:01-restricted T cells as well as induce cytokine production in cells isolated from ERA patients. These results are the first to demonstrate that a specific bacterial antigen could play a role in the pathogenesis of RA, mimicking the immunodominant T-cell epitope from type II collagen.


Asunto(s)
Artritis Reumatoide , Epítopos de Linfocito T , Artritis Reumatoide/metabolismo , Asparaginasa/genética , Colágeno Tipo II/metabolismo , Citocinas/metabolismo , Cadenas HLA-DRB1/metabolismo , Humanos , Epítopos Inmunodominantes/metabolismo , Interleucina-17/metabolismo , Interleucina-2/metabolismo , Imitación Molecular , Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...