Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Disaster Med Public Health Prep ; 13(5-6): 995-1010, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31203830

RESUMEN

A national need is to prepare for and respond to accidental or intentional disasters categorized as chemical, biological, radiological, nuclear, or explosive (CBRNE). These incidents require specific subject-matter expertise, yet have commonalities. We identify 7 core elements comprising CBRNE science that require integration for effective preparedness planning and public health and medical response and recovery. These core elements are (1) basic and clinical sciences, (2) modeling and systems management, (3) planning, (4) response and incident management, (5) recovery and resilience, (6) lessons learned, and (7) continuous improvement. A key feature is the ability of relevant subject matter experts to integrate information into response operations. We propose the CBRNE medical operations science support expert as a professional who (1) understands that CBRNE incidents require an integrated systems approach, (2) understands the key functions and contributions of CBRNE science practitioners, (3) helps direct strategic and tactical CBRNE planning and responses through first-hand experience, and (4) provides advice to senior decision-makers managing response activities. Recognition of both CBRNE science as a distinct competency and the establishment of the CBRNE medical operations science support expert informs the public of the enormous progress made, broadcasts opportunities for new talent, and enhances the sophistication and analytic expertise of senior managers planning for and responding to CBRNE incidents.


Asunto(s)
Derrame de Material Biológico/prevención & control , Liberación de Peligros Químicos/prevención & control , Servicios Médicos de Urgencia/métodos , Sustancias Explosivas/efectos adversos , Liberación de Radiactividad Peligrosa/prevención & control , Planificación en Desastres/organización & administración , Planificación en Desastres/tendencias , Servicios Médicos de Urgencia/tendencias , Humanos
2.
Elife ; 2: e01341, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24327562

RESUMEN

Information flow through neural circuits is determined by the nature of the synapses linking the subtypes of neurons. How neurons acquire features distinct to each synapse remains unknown. We show that the transcription factor Mafb drives the formation of auditory ribbon synapses, which are specialized for rapid transmission from hair cells to spiral ganglion neurons (SGNs). Mafb acts in SGNs to drive differentiation of the large postsynaptic density (PSD) characteristic of the ribbon synapse. In Mafb mutant mice, SGNs fail to develop normal PSDs, leading to reduced synapse number and impaired auditory responses. Conversely, increased Mafb accelerates synaptogenesis. Moreover, Mafb is responsible for executing one branch of the SGN differentiation program orchestrated by the Gata3 transcriptional network. Remarkably, restoration of Mafb rescues the synapse defect in Gata3 mutants. Hence, Mafb is a powerful regulator of cell-type specific features of auditory synaptogenesis that offers a new entry point for treating hearing loss. DOI: http://dx.doi.org/10.7554/eLife.01341.001.


Asunto(s)
Diferenciación Celular/fisiología , Factor de Transcripción GATA3/fisiología , Factor de Transcripción MafB/fisiología , Sinapsis/fisiología , Humanos
3.
J Neurosci ; 33(8): 3679-91, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23426694

RESUMEN

Spiral ganglion neurons (SGNs) play a key role in hearing by rapidly and faithfully transmitting signals from the cochlea to the brain. Identification of the transcriptional networks that ensure the proper specification and wiring of SGNs during development will lay the foundation for efforts to rewire a damaged cochlea. Here, we show that the transcription factor Gata3, which is expressed in SGNs throughout their development, is essential for formation of the intricately patterned connections in the cochlea. We generated conditional knock-out mice in which Gata3 is deleted after SGNs are specified. Cochlear wiring is severely disrupted in these animals, with premature extension of neurites that follow highly abnormal trajectories toward their targets, as shown using in vitro neurite outgrowth assays together with time-lapse imaging of whole embryonic cochleae. Expression profiling of mutant neurons revealed a broad shift in gene expression toward a more differentiated state, concomitant with minor changes in SGN identity. Thus, Gata3 appears to serve as an "intermediate regulator" that guides SGNs through differentiation and preserves the auditory fate. As the first auditory-specific regulator of SGN development, Gata3 provides a useful molecular entry point for efforts to engineer SGNs for the restoration of hearing.


Asunto(s)
Cóclea/embriología , Cóclea/crecimiento & desarrollo , Factor de Transcripción GATA3/fisiología , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Cóclea/metabolismo , Femenino , Factor de Transcripción GATA3/deficiencia , Masculino , Ratones , Ratones Noqueados , Neurogénesis/genética , Neurogénesis/fisiología , Ganglio Espiral de la Cóclea/embriología , Ganglio Espiral de la Cóclea/crecimiento & desarrollo , Ganglio Espiral de la Cóclea/metabolismo
4.
J Neurosci ; 31(30): 10903-18, 2011 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-21795542

RESUMEN

The sense of hearing depends on the faithful transmission of sound information from the ear to the brain by spiral ganglion (SG) neurons. However, how SG neurons develop the connections and properties that underlie auditory processing is largely unknown. We catalogued gene expression in mouse SG neurons from embryonic day 12, when SG neurons first extend projections, up until postnatal day 15, after the onset of hearing. For comparison, we also analyzed the closely related vestibular ganglion (VG). Gene ontology analysis confirmed enriched expression of genes associated with gene regulation and neurite outgrowth at early stages, with the SG and VG often expressing different members of the same gene family. At later stages, the neurons transcribe more genes related to mature function, and exhibit a dramatic increase in immune gene expression. Comparisons of the two populations revealed enhanced expression of TGFß pathway components in SG neurons and established new markers that consistently distinguish auditory and vestibular neurons. Unexpectedly, we found that Gata3, a transcription factor commonly associated with auditory development, is also expressed in VG neurons at early stages. We therefore defined new cohorts of transcription factors and axon guidance molecules that are uniquely expressed in SG neurons and may drive auditory-specific aspects of their differentiation and wiring. We show that one of these molecules, the receptor guanylyl cyclase Npr2, is required for bifurcation of the SG central axon. Hence, our dataset provides a useful resource for uncovering the molecular basis of specific auditory circuit assembly events.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Redes Reguladoras de Genes/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/embriología , Algoritmos , Animales , Animales Recién Nacidos , Axones/fisiología , Receptores de Proteínas Morfogenéticas Óseas/genética , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Análisis por Conglomerados , Embrión de Mamíferos , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/genética , Técnicas In Vitro , Factor de Transcripción MafB/genética , Ratones , Ratones Transgénicos , Neuronas/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , PubMed/estadística & datos numéricos , Receptor EphA5/genética , Receptor EphA5/metabolismo , Receptores del Factor Natriurético Atrial/genética , Reproducibilidad de los Resultados , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
5.
Prog Neurobiol ; 93(4): 488-508, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21232575

RESUMEN

Our sense of hearing depends on precisely organized circuits that allow us to sense, perceive, and respond to complex sounds in our environment, from music and language to simple warning signals. Auditory processing begins in the cochlea of the inner ear, where sounds are detected by sensory hair cells and then transmitted to the central nervous system by spiral ganglion neurons, which faithfully preserve the frequency, intensity, and timing of each stimulus. During the assembly of auditory circuits, spiral ganglion neurons establish precise connections that link hair cells in the cochlea to target neurons in the auditory brainstem, develop specific firing properties, and elaborate unusual synapses both in the periphery and in the CNS. Understanding how spiral ganglion neurons acquire these unique properties is a key goal in auditory neuroscience, as these neurons represent the sole input of auditory information to the brain. In addition, the best currently available treatment for many forms of deafness is the cochlear implant, which compensates for lost hair cell function by directly stimulating the auditory nerve. Historically, studies of the auditory system have lagged behind other sensory systems due to the small size and inaccessibility of the inner ear. With the advent of new molecular genetic tools, this gap is narrowing. Here, we summarize recent insights into the cellular and molecular cues that guide the development of spiral ganglion neurons, from their origin in the proneurosensory domain of the otic vesicle to the formation of specialized synapses that ensure rapid and reliable transmission of sound information from the ear to the brain.


Asunto(s)
Vías Auditivas/anatomía & histología , Vías Auditivas/fisiología , Encéfalo/anatomía & histología , Encéfalo/fisiología , Audición/fisiología , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/fisiología , Animales , Diferenciación Celular , Células Ciliadas Auditivas/fisiología , Humanos , Neurogénesis/fisiología , Neuronas/citología , Neuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...