Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 20(28): 5583-5591, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38973372

RESUMEN

Sand is a highly dissipative system, where the local spatial arrangements and densities depend strongly on the applied forces, resulting in fluid-like or solid-like behaviour. This makes sand swimming challenging and intriguing, raising questions about the nature of the motion and how to optimize the design of artificial swimmers able to swim in sand. Recent experiments suggest that lateral undulatory motion enables efficient locomotion, with a non-monotonic dependence of the swimming speed on the undulatory frequency and the height of the sediment bed. Here, we propose a 2D granular model, where the effect of the sediment height is modeled by an effective frictional force with the substrate. We show that the optimal frequency coincides with the second vibrational mode of the swimmer and explain the underlying mechanism through a characterization of the rheology of the medium. Potential implications in the design of artificial swimmers are discussed.

2.
PLoS One ; 19(5): e0302974, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758760

RESUMEN

The diagnosis of breast cancer through MicroWave Imaging (MWI) technology has been extensively researched over the past few decades. However, continuous improvements to systems are needed to achieve clinical viability. To this end, the numerical models employed in simulation studies need to be diversified, anatomically accurate, and also representative of the cases in clinical settings. Hence, we have created the first open-access repository of 3D anatomically accurate numerical models of the breast, derived from 3.0T Magnetic Resonance Images (MRI) of benign breast disease and breast cancer patients. The models include normal breast tissues (fat, fibroglandular, skin, and muscle tissues), and benign and cancerous breast tumors. The repository contains easily reconfigurable models which can be tumor-free or contain single or multiple tumors, allowing complex and realistic test scenarios needed for feasibility and performance assessment of MWI devices prior to experimental and clinical testing. It also includes an executable file which enables researchers to generate models incorporating the dielectric properties of breast tissues at a chosen frequency ranging from 3 to 10 GHz, thereby ensuring compatibility with a wide spectrum of research requirements and stages of development for any breast MWI prototype system. Currently, our dataset comprises MRI scans of 55 patients, but new exams will be continuously added.


Asunto(s)
Neoplasias de la Mama , Mama , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Femenino , Mama/diagnóstico por imagen , Mama/patología , Imágenes de Microonda , Microondas
3.
Phys Rev Lett ; 132(11): 118201, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38563942

RESUMEN

Self-folding is an emerging paradigm for the inverse design of three-dimensional structures. While most efforts have concentrated on the shape of the net, our approach introduces a new design dimension-bond specificity between the edges. We transform this design process into a Boolean satisfiability problem to derive solutions for various target structures. This method significantly enhances the yield of the folding process. Furthermore, by linearly combining independent solutions, we achieve designs for shape-shifting nets wherein the dominant structure evolves with varying external conditions. This approach is demonstrated through coarse-grained simulations on two examples of triangular and square nets capable of folding into multiple target shapes.

4.
Soft Matter ; 20(11): 2419-2441, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38420837

RESUMEN

With the rapid development of studies involving droplet microfluidics, drug delivery, cell detection, and microparticle synthesis, among others, many scientists have invested significant efforts to model the flow of these fluid-filled bodies. Motivated by the intricate coupling between hydrodynamics and the interactions of fluid-filled bodies, several methods have been developed. The objective of this review is to present a compact foundation of the methods used in the literature in the context of lattice Boltzmann methods. For hydrodynamics, we focus on the lattice Boltzmann method due to its specific ability to treat time- and spatial-dependent boundary conditions and to incorporate new physical models in a computationally efficient way. We split the existing methods into two groups with regard to the interfacial boundary: fluid-structure and fluid-fluid methods. The fluid-structure methods are characterised by the coupling between fluid dynamics and mechanics of the flowing body, often used in applications involving membranes and similar flexible solid boundaries. We further divide fluid-structure-based methods into two subcategories, those which treat the fluid-structure boundary as a continuum medium and those that treat it as a discrete collection of individual springs and particles. Next, we discuss the fluid-fluid methods, particularly useful for the simulations of fluid-fluid interfaces. We focus on models for immiscible droplets and their interaction in a suspending fluid and describe benchmark tests to validate the models for fluid-filled bodies.

5.
Soft Matter ; 20(5): 1114-1119, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38224143

RESUMEN

Kirigami-inspired designs can enable self-folding three-dimensional materials from flat, two-dimensional sheets. Hierarchical designs of connected levels increase the diversity of possible target structures, yet they can lead to longer folding times in the presence of fluctuations. Here, we study the effect of rotational coupling between levels on the self-folding of two-level kirigami designs driven by thermal noise in a fluid. Naturally present due to hydrodynamic resistance, we find that this coupling parameter can significantly impact a structure's self-folding pathway, thus enabling us to assess the quality of a kirigami design and the possibility for its optimization in terms of its folding rate and yield.

6.
Nat Commun ; 14(1): 7324, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957196

RESUMEN

The formation of groups of interacting individuals improves performance and fitness in many decentralised systems, from micro-organisms to social insects, from robotic swarms to artificial intelligence algorithms. Often, group formation and high-level coordination in these systems emerge from individuals with limited information-processing capabilities implementing low-level rules of communication to signal to each other. Here, we show that, even in a community of clueless individuals incapable of processing information and communicating, a dynamic environment can coordinate group formation by transiently storing memory of the earlier passage of individuals. Our results identify a new mechanism of indirect coordination via shared memory that is primarily promoted and reinforced by dynamic environmental factors, thus overshadowing the need for any form of explicit signalling between individuals. We expect this pathway to group formation to be relevant for understanding and controlling self-organisation and collective decision making in both living and artificial active matter in real-life environments.


Asunto(s)
Inteligencia Artificial , Robótica , Humanos , Cognición , Algoritmos , Comunicación
7.
Phys Rev E ; 107(3-2): 035106, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37073003

RESUMEN

Droplets suspended in fluids flowing through microchannels are often encountered in different contexts and scales, from oil extraction down to microfluidics. They are usually flexible and deform as a product of the interplay between flexibility, hydrodynamics, and interaction with confining walls. Deformability adds distinct characteristics to the nature of the flow of these droplets. We simulate deformable droplets suspended in a fluid at a high volume fraction flowing through a cylindrical wetting channel. We find a discontinuous shear thinning transition, which depends on the droplet deformability. The capillary number is the main dimensionless parameter that controls the transition. Previous results have focused on two-dimensional configurations. Here we show that, in three dimensions, even the velocity profile is different. To perform this study, we improve and extend to three dimensions a multicomponent lattice Boltzmann method which prevents the coalescence between the droplets.

8.
Soft Matter ; 19(9): 1695-1704, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36779972

RESUMEN

Self-organisation is the spontaneous emergence of spatio-temporal structures and patterns from the interaction of smaller individual units. Examples are found across many scales in very different systems and scientific disciplines, from physics, materials science and robotics to biology, geophysics and astronomy. Recent research has highlighted how self-organisation can be both mediated and controlled by confinement. Confinement is an action over a system that limits its units' translational and rotational degrees of freedom, thus also influencing the system's phase space probability density; it can function as either a catalyst or inhibitor of self-organisation. Confinement can then become a means to actively steer the emergence or suppression of collective phenomena in space and time. Here, to provide a common framework and perspective for future research, we examine the role of confinement in the self-organisation of soft-matter systems and identify overarching scientific challenges that need to be addressed to harness its full scientific and technological potential in soft matter and related fields. By drawing analogies with other disciplines, this framework will accelerate a common deeper understanding of self-organisation and trigger the development of innovative strategies to steer it using confinement, with impact on, e.g., the design of smarter materials, tissue engineering for biomedicine and in guiding active matter.

9.
Soft Matter ; 18(39): 7642-7653, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36169262

RESUMEN

Efficient nutrient mixing is crucial for the survival of bacterial colonies and other living systems known as active nematics. However, the dynamics of this mixing is non-trivial as there is a coupling between nutrients concentration and velocity field. To address this question, we solve the hydrodynamic equation for active nematics to model the bacterial swarms coupled to an advection-diffusion equation for the activity field, which is proportional to the concentration of nutrients. At the interface between active and passive nematics the activity field is transported by the interfacial flows and in turn it modifies them through the generation of active stresses. We find that the dispersion of this conserved activity field is subdiffusive due to the emergence of a barrier of negative defects at the active-passive interface, which hinders the propagation of the motile positive defects.


Asunto(s)
Hidrodinámica , Difusión
10.
Soft Matter ; 18(36): 6899-6906, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36043894

RESUMEN

The presence of obstacles is intuitively expected to hinder the diffusive transport of active particles. However, for chiral active particles, a low density of obstacles near a surface can enhance their diffusive behavior. Here, we study numerically the role that disorder plays in determining the transport dynamics of chiral active particles on surfaces with obstacles. We consider different densities of regularly spaced obstacles and distinct types of disorder: noise in the dynamics of the particle, quenched noise in the positions of the obstacles as well as obstacle size polydispersity. We show that, depending on the type and strength of the disorder, the presence of obstacles can either enhance or hinder transport, and discuss implications for the control of active transport in disordered media.

11.
ACS Appl Mater Interfaces ; 14(36): 40469-40480, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36044384

RESUMEN

The study of the interactions of living adherent cells with mechanically stable (visco)elastic materials enables understanding and exploitation of physiological phenomena mediated by cell-extracellular communication. Insights into the interaction of cells and surrounding objects with different stability patterns upon cell contact might unveil biological responses to engineer innovative applications. Here, we hypothesize that the efficiency of cell attachment, spreading, and movement across a free-packed granular bed of microparticles depends on the microparticle diameter, raising the possibility of a necessary minimum traction force for the reinforcement of cell-particle bonds and long-term cell adhesion. The results suggest that microparticles with diameters of 14-20 µm are prone to cell-mediated mobility, holding the potential of inducing early cell detachment, while objects with diameters from 38 to 85 µm enable long-lasting cell adhesion and proliferation. An in silico hybrid particle-based model that addresses the time-dependent biological mechanisms of cell adhesion is proposed, providing inspiration for engineering platforms to address healthcare-related challenges.


Asunto(s)
Micropartículas Derivadas de Células , Adhesión Celular , Simulación por Computador
12.
Soft Matter ; 18(30): 5699-5705, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35876272

RESUMEN

We propose a model, based on active Brownian particles, for the dynamics of cells confined in a two-state micropattern, composed of two rectangular boxes connected by a bridge, and investigate the transition statistics. A transition between boxes occurs when the active particle crosses the center of the bridge, and the time between subsequent transitions is the dwell time. By assuming that the rotational diffusion time τ is a function of the position, some experimental observations are qualitatively recovered as, for example, the shape of the survival function. τ controls the transition from a ballistic regime at short time scales to a diffusive regime at long time scales, with an effective diffusion coefficient proportional to τ. For small values of τ, the dwell time is determined by the characteristic diffusion timescale which is constant for very low values of τ, when the rotational diffusion is much faster than the translational one and decays with τ for intermediate values of τ. For large values of τ, the interaction with the walls dominates and the particle stays mostly at the corners of the boxes increasing the dwell time. We find that there is an optimal τ for which the dwell time is minimal and its value can be tuned by changing the geometry of the pattern.

13.
Sensors (Basel) ; 21(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34960354

RESUMEN

Breast cancer diagnosis using radar-based medical MicroWave Imaging (MWI) has been studied in recent years. Realistic numerical and physical models of the breast are needed for simulation and experimental testing of MWI prototypes. We aim to provide the scientific community with an online repository of multiple accurate realistic breast tissue models derived from Magnetic Resonance Imaging (MRI), including benign and malignant tumours. Such models are suitable for 3D printing, leveraging experimental MWI testing. We propose a pre-processing pipeline, which includes image registration, bias field correction, data normalisation, background subtraction, and median filtering. We segmented the fat tissue with the region growing algorithm in fat-weighted Dixon images. Skin, fibroglandular tissue, and the chest wall boundary were segmented from water-weighted Dixon images. Then, we applied a 3D region growing and Hoshen-Kopelman algorithms for tumour segmentation. The developed semi-automatic segmentation procedure is suitable to segment tissues with a varying level of heterogeneity regarding voxel intensity. Two accurate breast models with benign and malignant tumours, with dielectric properties at 3, 6, and 9 GHz frequencies have been made available to the research community. These are suitable for microwave diagnosis, i.e., imaging and classification, and can be easily adapted to other imaging modalities.


Asunto(s)
Neoplasias de la Mama , Imágenes de Microonda , Algoritmos , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética
14.
Sci Rep ; 11(1): 19894, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34615941

RESUMEN

The collective dynamics of cells on surfaces and interfaces poses technological and theoretical challenges in the study of morphogenesis, tissue engineering, and cancer. Different mechanisms are at play, including, cell-cell adhesion, cell motility, and proliferation. However, the relative importance of each one is elusive. Here, experiments with a culture of glioblastoma multiforme cells on a substrate are combined with in silico modeling to infer the rate of each mechanism. By parametrizing these rates, the time-dependence of the spatial correlation observed experimentally is reproduced. The obtained results suggest a reduction in cell-cell adhesion with the density of cells. The reason for such reduction and possible implications for the collective dynamics of cancer cells are discussed.


Asunto(s)
Fenómenos Fisiológicos Celulares , Modelos Biológicos , Algoritmos , Adhesión Celular , Línea Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Células Cultivadas , Humanos
15.
PLoS One ; 16(10): e0259002, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34705873

RESUMEN

We consider a simple theoretical model to investigate the impact of inheritances on the wealth distribution. Wealth is described as a finite resource, which remains constant over different generations and is divided equally among offspring. All other sources of wealth are neglected. We consider different societies characterized by a different offspring probability distribution. We find that, if the population remains constant, the society reaches a stationary wealth distribution. We show that inequality emerges every time the number of children per family is not always the same. For realistic offspring distributions from developed countries, the model predicts a Gini coefficient of G ≈ 0.3. If we divide the society into wealth classes and set the probability of getting married to depend on the distance between classes, the stationary wealth distribution crosses over from an exponential to a power-law regime as the number of wealth classes and the level of class distinction increase.


Asunto(s)
Composición Familiar , Modelos Teóricos , Clase Social , Factores Socioeconómicos , Humanos
16.
Philos Trans A Math Phys Eng Sci ; 379(2208): 20200394, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34455836

RESUMEN

Activity in nematics drives interfacial flows that lead to preferential alignment that is tangential or planar for extensile systems (pushers) and perpendicular or homeotropic for contractile ones (pullers). This alignment is known as active anchoring and has been reported for a number of systems and described using active nematic hydrodynamic theories. The latter are based on the one-elastic constant approximation, i.e. they assume elastic isotropy of the underlying passive nematic. Real nematics, however, have different elastic constants, which lead to interfacial anchoring. In this paper, we consider elastic anisotropy in multiphase and multicomponent hydrodynamic models of active nematics and investigate the competition between the interfacial alignment driven by the elastic anisotropy of the passive nematic and the active anchoring. We start by considering systems with translational invariance to analyse the alignment at flat interfaces and, then, consider two-dimensional systems and active nematic droplets. We investigate the competition of the two types of anchoring over a wide range of the other parameters that characterize the system. The results of the simulations reveal that the active anchoring dominates except at very low activities, when the interfaces are static. In addition, we found that the elastic anisotropy does not affect the dynamics but changes the active length that becomes anisotropic. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.

17.
Biophys J ; 119(11): 2299-2306, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33130122

RESUMEN

The structure and dynamics of tissue cultures depend strongly on the physical and chemical properties of the underlying substrate. Inspired by previous advances in the context of inorganic materials, the use of patterned culture surfaces has been proposed as an effective way to induce space-dependent properties in cell tissues. However, cells move and diffuse, and the transduction of external stimuli to biological signals is not instantaneous. Here, we show that the fidelity of patterns to demix tissue cells depends on the relation between the diffusion (τD) and adaptation (τ) times. Numerical results for the self-propelled Voronoi model reveal that the fidelity decreases with τ/τD, a result that is reproduced by a continuum reaction-diffusion model. Based on recent experimental results for single cells, we derive a minimal length scale for the patterns in the substrate that depends on τ/τD and can be much larger than the cell size.


Asunto(s)
Difusión
18.
Soft Matter ; 16(17): 4256-4266, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32301453

RESUMEN

Motivated by results for the propagation of active-passive interfaces of bacterial Serratia marcescens swarms [Nat. Commun., 2018, 9, 5373], we used a hydrodynamic multiphase model to investigate the propagation of interfaces of active nematics on substrates. We characterized the active nematic phase of the model through the calculation of the spatial and temporal auto correlation functions and the energy spectrum and discussed its description of the statistical dynamics of the swarms reported in the experiment. We then studied the propagation of circular and flat active-passive interfaces. We found that the closing time of the circular passive domain decays quadratically with the activity and that the structure factor of the flat interface is similar to that reported for the swarms, with an activity dependent exponent. Finally, the effect of the substrate friction was investigated. We found an activity dependent threshold, above which the turbulent active nematic forms isolated islands that shrink until the system becomes isotropic and below which the active nematic expands, with a well defined propagating interface. We also found that the interface becomes static in the presence of a friction gradient.

19.
Soft Matter ; 16(17): 4267-4273, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32307474

RESUMEN

Structural defects are ubiquitous in condensed matter, and not always a nuisance. For example, they underlie phenomena such as Anderson localization and hyperuniformity, and they are now being exploited to engineer novel materials. Here, we show experimentally that the density of structural defects in a 2D binary colloidal crystal can be engineered with a random potential. We generate the random potential using an optical speckle pattern, whose induced forces act strongly on one species of particles (strong particles) and weakly on the other (weak particles). Thus, the strong particles are more attracted to the randomly distributed local minima of the optical potential, leaving a trail of defects in the crystalline structure of the colloidal crystal. While, as expected, the crystalline ordering initially decreases with an increasing fraction of strong particles, the crystalline order is surprisingly recovered for sufficiently large fractions. We confirm our experimental results with particle-based simulations, which permit us to elucidate how this non-monotonic behavior results from the competition between the particle-potential and particle-particle interactions.

20.
PLoS One ; 14(12): e0225315, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31800590

RESUMEN

Worldwide tourism revenues have tripled in the last decade. Yet, there is a gap in our understanding of how distances shape peoples' travel choices. To understand global tourism patterns we map the flow of tourists around the world onto a complex network and study the impact of two types of distances, geographical and through the World Airline Network, a major infrastructure for tourism. We find that although the World Airline Network serves as infrastructural support for the International Tourism Network, the flow of tourism does not correlate strongly with the extent of flight connections available worldwide. Instead, unidirectional flows appear locally forming communities that shed light on global travelling behaviour since there is only a 15% probability of finding bidirectional tourism between a pair of countries. We find that most tourists travel to neighbouring countries and mainly cover larger distances when there is a direct flight, irrespective of the time it takes. This may be a consequence of one-way cyclic tourism that we uncover by analysing the triangles that are formed by the network of flows in the International Tourism Network.


Asunto(s)
Viaje en Avión/psicología , Percepción de Distancia , Recreación/psicología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA