Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 118(6): 1889-1906, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38494830

RESUMEN

Plants have developed the ability to adjust to the day/night cycle through the expression of diel genes, which allow them to effectively respond to environmental changes and optimise their growth and development. Diel oscillations also have substantial implications in many physiological processes, including photosynthesis, floral development, and environmental stress responses. The expression of diel genes is regulated by a combination of the circadian clock and responses to environmental cues, such as light and temperature. A great deal of information is available on the transcriptional regulation of diel gene expression. However, the extent to which translational regulation is involved in controlling diel changes in expression is not yet clear. To investigate the impact of translational regulation on diel expression, we conducted Ribo-seq and RNA-seq analyses on a time-series sample of Arabidopsis shoots cultivated under a 12 h light/dark cycle. Our results showed that translational regulation is involved in about 71% of the genes exhibiting diel changes in mRNA abundance or translational activity, including clock genes, many of which are subject to both translational and transcriptional control. They also revealed that the diel expression of glycosylation and ion-transporter-related genes is mainly established through translational regulation. The expression of several diel genes likely subject to translational regulation through upstream open-reading frames was also determined.


Asunto(s)
Arabidopsis , Relojes Circadianos , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Relojes Circadianos/genética , Ribosomas/metabolismo , Ribosomas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Biosíntesis de Proteínas , Fotoperiodo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ritmo Circadiano/genética , Perfilado de Ribosomas
2.
Plant Cell Physiol ; 64(12): 1563-1575, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37875012

RESUMEN

Xylem vessel cell differentiation is characterized by the deposition of a secondary cell wall (SCW) containing cellulose, hemicellulose and lignin. VASCULAR-RELATED NAC-DOMAIN7 (VND7), a plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factor, is a master regulator of xylem vessel cell differentiation in Arabidopsis (Arabidopsis thaliana). Previous metabolome analysis using the VND7-inducible system in tobacco BY-2 cells successfully revealed significant quantitative changes in primary metabolites during xylem vessel cell differentiation. However, the flow of primary metabolites is not yet well understood. Here, we performed a metabolomic analysis of VND7-inducible Arabidopsis T87 suspension cells. Capillary electrophoresis-time-of-flight mass spectrometry quantified 57 metabolites, and subsequent data analysis highlighted active changes in the levels of UDP-glucose and phenylalanine, which are building blocks of cellulose and lignin, respectively. In a metabolic flow analysis using stable carbon 13 (13C) isotope, the 13C-labeling ratio specifically increased in 3-phosphoglycerate after 12 h of VND7 induction, followed by an increase in shikimate after 24 h of induction, while the inflow of 13C into lactate from pyruvate was significantly inhibited, indicating an active shift of carbon flow from glycolysis to the shikimate pathway during xylem vessel cell differentiation. In support of this notion, most glycolytic genes involved in the downstream of glyceraldehyde 3-phosphate were downregulated following the induction of xylem vessel cell differentiation, whereas genes for the shikimate pathway and phenylalanine biosynthesis were upregulated. These findings provide evidence for the active shift of carbon flow from primary metabolic pathways to the SCW polymer biosynthetic pathway at specific points during xylem vessel cell differentiation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Lignina/metabolismo , Metabolismo Secundario , Carbono/metabolismo , Ácido Shikímico/metabolismo , Xilema/metabolismo , Celulosa/metabolismo , Diferenciación Celular , Fenilalanina/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Dev Growth Differ ; 64(1): 5-15, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34918343

RESUMEN

Plant cell walls are typically composed of polysaccharide polymers and cell wall proteins (CWPs). CWPs account for approximately 10% of the plant cell wall structure and perform a wide range of functions. Previous studies have identified approximately 1000 CWPs in the model plant Arabidopsis thaliana; however, the analyses mainly targeted primary cell walls, which are generated at cell division. In contrast, little is known about CWPs in secondary cell walls (SCWs), which are rigid and contain the phenolic polymer lignin. Here, we performed a cell wall proteome analysis to obtain novel insights into CWPs in SCWs. To this end, we tested multiple methods for cell wall extraction with cultured Arabidopsis cells carrying the VND7-VP16-GR system, with which cells can be transdifferentiated into xylem-vessel-like cells with lignified SCWs by dexamethasone treatment. We then subjected the protein samples to in-gel trypsin digestion followed by LC-MS/MS analysis. The different extraction methods resulted in the detection of different cell wall fraction proteins (CWFPs). In particular, centrifugation conditions had a strong impact on the extracted CWFP species, resulting in the increased number of identified CWFPs. We successfully identified 896 proteins as CWFPs in total, including proteases, expansins, purple phosphatase, well-known lignin-related enzymes (laccase and peroxidase), and 683 of 896 proteins were newly identified CWFPs. These results demonstrate the usefulness of our CWP analysis method. Further analyses of SCW-related CWPs could be expected to produce information useful for understanding the roles of CWPs in plant cell functions.


Asunto(s)
Proteoma , Espectrometría de Masas en Tándem , Diferenciación Celular , Pared Celular , Cromatografía Liquida , Xilema
4.
Plant Cell Physiol ; 61(4): 712-721, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31879778

RESUMEN

Development of pollen, the male gametophyte of flowering plants, is tightly controlled by dynamic changes in gene expression. Recent research to clarify the molecular aspects of pollen development has revealed the involvement of several transcription factors in the induction of gene expression. However, limited information is available about the factors involved in the negative regulation of gene expression to eliminate unnecessary transcripts during pollen development. In this study, we revealed that AtNOT1 is an essential protein for proper pollen development and germination capacity. AtNOT1 is a scaffold protein of the AtCCR4-NOT complex, which includes multiple components related to mRNA turnover control in Arabidopsis. Phenotypic analysis using atnot1 heterozygote mutant pollen showed that the mature mutant pollen failed to germinate and also revealed abnormal localization of nuclei and a specific protein at the tricellular pollen stage. Furthermore, transcriptome analysis of atnot1 heterozygote mutant pollen showed that the downregulation of a large number of transcripts, along with the upregulation of specific transcripts required for pollen tube germination by AtNOT1 during late microgametogenesis, is important for proper pollen development and germination. Overall, our findings provide new insights into the negative regulation of gene expression during pollen development, by showing the severely defective phonotype of atnot1 heterozygote mutant pollen.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Polen/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Germinación/genética , Heterocigoto , Polen/metabolismo , Tubo Polínico/metabolismo , Polinización , Regiones Promotoras Genéticas , Factores de Transcripción
5.
Plant Cell Physiol ; 60(9): 2015-2025, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31093672

RESUMEN

CCR4/CAF1 are widely conserved deadenylases in eukaryotes. They form a large complex that includes NOT1 as a scaffold protein and various NOT proteins that are core components of multiple levels of gene expression control. The CCR4-NOT complex also contains several RNA-binding proteins as accessory proteins, which are required for target recognition by CCR4/CAF1 deadenylases. AtCCR4a/b, orthologs of human CCR4 in Arabidopsis, have various physiological effects. AtCCR4 isoforms are likely to have specific target mRNAs related to each physiological effect; however, AtCCR4 does not have RNA-binding capability. Therefore, identifying factors that interact with AtCCR4a/b is indispensable to understand its function as a regulator of gene expression, as well as the target mRNA recognition mechanism. Here, we identified putative components of the AtCCR4-NOT complex using co-immunoprecipitation in combination with mass spectrometry using FLAG-tagged AtCCR4b and subsequent verification with a yeast two-hybrid assay. Interestingly, four of 11 AtCAF1 isoforms interacted with both AtCCR4b and AtNOT1, whereas two isoforms interacted only with AtNOT1 in yeast two-hybrid assays. These results imply that Arabidopsis has multiple CCR4-NOT complexes with various combinations of deadenylases. We also revealed that the RNA-binding protein Arabidopsis Pumilio 5 and 2 interacted with AtCCR4a/b in the cytoplasm with a few foci.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citoplasma/metabolismo , Filogenia , Isoformas de Proteínas , Proteínas de Unión al ARN/genética , Receptores CCR4/genética , Proteínas Represoras/genética , Técnicas del Sistema de Dos Híbridos
6.
Plant Cell Physiol ; 58(6): 1090-1102, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28444357

RESUMEN

Plants possess a cold acclimation system to acquire freezing tolerance through pre-exposure to non-freezing low temperatures. The transcriptional cascade of C-repeat-binding factors (CBFs)/dehydration response element-binding factors (DREBs) is considered a major transcriptional regulatory pathway during cold acclimation. However, little is known regarding the functional significance of mRNA stability regulation in the response of gene expression to cold stress. The actual level of individual mRNAs is determined by a balance between mRNA synthesis and degradation. Therefore, it is important to assess the regulatory steps to increase our understanding of gene regulation. Here, we analyzed temporal changes in mRNA amounts and half-lives in response to cold stress in Arabidopsis cell cultures based on genome-wide analysis. In this mRNA decay array method, mRNA half-life measurements and microarray analyses were combined. In addition, temporal changes in the integrated value of transcription rates were estimated from the above two parameters using a mathematical approach. Our results showed that several cold-responsive genes, including Cold-regulated 15a, were relatively destabilized, whereas the mRNA amounts were increased during cold treatment by accelerating the transcription rate to overcome the destabilization. Considering the kinetics of mRNA synthesis and degradation, this apparently contradictory result supports that mRNA destabilization is advantageous for the swift increase in CBF-responsive genes in response to cold stress.


Asunto(s)
Arabidopsis/metabolismo , ARN Mensajero/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Frío , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Estabilidad del ARN/genética , Estabilidad del ARN/fisiología , ARN Mensajero/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Transcripción Genética/fisiología
7.
Plant Cell Physiol ; 56(5): 863-74, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25630334

RESUMEN

Removing the poly(A) tail is the first and rate-limiting step of mRNA degradation and apparently an effective step not only for modulating mRNA stability but also for translation of many eukaryotic transcripts. Carbon catabolite repressor 4 (CCR4) has been identified as a major cytoplasmic deadenylase in Saccharomyces cerevisiae. The Arabidopsis thaliana homologs of the yeast CCR4, AtCCR4a and AtCCR4b, were identified by sequence-based analysis; however, their role and physiological significance in plants remain to be elucidated. In this study, we revealed that AtCCR4a and AtCCR4b are localized to cytoplasmic mRNA processing bodies, which are specific granules consisting of many enzymes involved in mRNA turnover. Double mutants of AtCCR4a and AtCCR4b exhibited tolerance to sucrose application but not to glucose. The levels of sucrose in the seedlings of the atccr4a/4b double mutants were reduced, whereas no difference was observed in glucose levels. Further, amylose levels were slightly but significantly increased in the atccr4a/4b double mutants. Consistent with this observation, we found that the transcript encoding granule-bound starch synthase 1 (GBSS1), which is responsible for amylose synthesis, is accumulated to a higher level in the atccr4a/4b double mutant plants than in the control plants. Moreover, we revealed that GBSS1 has a longer poly(A) tail in the double mutant than in the control plant, suggesting that AtCCR4a and AtCCR4b can influence the poly(A) length of transcripts related to starch metabolism. Our results collectively suggested that AtCCR4a and AtCCR4b are involved in sucrose and starch metabolism in A. thaliana.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Poli A/metabolismo , Proteínas Represoras/metabolismo , Almidón Sintasa/metabolismo , Almidón/metabolismo , Sacarosa/metabolismo , Amilosa/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mutación/genética , Fenotipo , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Almidón Sintasa/genética , Sacarosa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...