Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2402156, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869191

RESUMEN

Producing green hydrogen in a cost-competitive manner via water electrolysis will make the long-held dream of hydrogen economy a reality. Although platinum (Pt)-based catalysts show good performance toward hydrogen evolution reaction (HER), the high cost and scarce abundance challenge their economic viability and sustainability. Here, a non-Pt, high-performance electrocatalyst for HER achieved by engineering high fractions of stacking fault (SF) defects for MoNi4/MoO2 nanosheets (d-MoNi) through a combined chemical and thermal reduction strategy is shown. The d-MoNi catalyst offers ultralow overpotentials of 78 and 121 mV for HER at current densities of 500 and 1000 mA cm-2 in 1 M KOH, respectively. The defect-rich d-MoNi exhibits four times higher turnover frequency than the benchmark 20% Pt/C, together with its excellent durability (> 100 h), making it one of the best-performing non-Pt catalysts for HER. The experimental and theoretical results reveal that the abundant SFs in d-MoNi induce a compressive strain, decreasing the proton adsorption energy and promoting the associated combination of *H into hydrogen and molecular hydrogen desorption, enhancing the HER performance. This work provides a new synthetic route to engineer defective metal and metal alloy electrocatalysts for emerging electrochemical energy conversion and storage applications.

2.
Chem Commun (Camb) ; 60(39): 5104-5135, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38625567

RESUMEN

Water electrolysis is a promising method for efficiently producing hydrogen and oxygen, crucial for renewable energy conversion and fuel cell technologies. The hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are two key electrocatalytic reactions occurring during water splitting, necessitating the development of active, stable, and low-cost electrocatalysts. Transition metal (TM)-based electrocatalysts, spanning noble metals and TM oxides, phosphides, nitrides, carbides, borides, chalcogenides, and dichalcogenides, have garnered significant attention due to their outstanding characteristics, including high electronic conductivity, tunable valence electron configuration, high stability, and cost-effectiveness. This timely review discusses developments in TM-based electrocatalysts for the HER and OER in alkaline media in the last 10 years, revealing that the exposure of more accessible surface-active sites, specific electronic effects, and string effects are essential for the development of efficient electrocatalysts towards electrochemical water splitting application. This comprehensive review serves as a guide for designing and constructing state-of-the-art, high-performance bifunctional electrocatalysts based on TMs, particularly for applications in water splitting.

3.
Langmuir ; 40(18): 9732-9740, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38668749

RESUMEN

Metal-organic frameworks (MOFs) are highly regarded as valuable adsorbent materials in materials science, particularly in the field of CO2 capture. While numerous single-metal-based MOFs have demonstrated exceptional CO2 adsorption capabilities, recent advancements have explored the potential of bimetallic MOFs for enhanced performance. In this study, a CuCe-BTC MOF was synthesized through a straightforward hydrothermal method, and its improved properties, such as high surface area, smaller pore size, and larger pore volume, were compared with those of the bare Ce-BTC. The impact of the Cu/Ce ratio (1:4, 1:2, 1:1, and 3:2) was systematically investigated to understand how adding a second metal influences the CO2 adsorption performance of the Ce-BTC MOF. Various characterization techniques, including scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and N2 BET surface area analysis, were employed to assess the physical and chemical properties of the bare Ce-BTC and CuCe-BTC samples. Notably, CuCe-BTC-1:2 exhibited superior surface area (133 m2 g-1), small pore size (3.3 nm), and large pore volume (0.14 cm3 g-1) compared to the monometallic Ce-BTC. Furthermore, CuCe-BTC-1:2 demonstrated a superior CO2 adsorption capacity (0.74 mmol g-1), long-term stability, and good CO2/N2 selectivity. This research provides valuable insights into the design of metal-BTC frameworks and elucidates how introducing a second metal enhances the properties of the monometallic Ce-BTC-MOF, leading to improved CO2 capture performance.

4.
Adv Mater ; 36(21): e2313378, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38340031

RESUMEN

Green hydrogen, derived from water splitting powered by renewable energy such as solar and wind energy, provides a zero-emission solution crucial for revolutionizing hydrogen production and decarbonizing industries. Catalysts, particularly those utilizing defect engineering involving the strategical introduction of atomic-level imperfections, play a vital role in reducing energy requirements and enabling a more sustainable transition toward a hydrogen-based economy. Stacking fault (SF) defects play an important role in enhancing the electrocatalytic processes by reshaping surface reactivity, increasing active sites, improving reactants/product diffusion, and regulating electronic structure due to their dense generation ability and profound impact on catalyst properties. This review explores SF in metal-based materials, covering synthetic methods for the intentional introduction of SF and their applications in hydrogen production, including oxygen evolution reaction, photo- and electrocatalytic hydrogen evolution reaction, overall water splitting, and various other electrocatalytic processes such as oxygen reduction reaction, nitrate reduction reaction, and carbon dioxide reduction reaction. Finally, this review addresses the challenges associated with SF-based catalysts, emphasizing the importance of a detailed understanding of the properties of SF-based catalysts to optimize their electrocatalytic performance. It provides a comprehensive overview of their various applications in electrocatalytic processes, providing valuable insights for advancing sustainable energy technologies.

5.
Langmuir ; 40(5): 2465-2486, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38265034

RESUMEN

Developing sustainable energy solutions to safeguard the environment is a critical ongoing demand. Electrochemical water splitting (EWS) is a green approach to create effective and long-lasting electrocatalysts for the water oxidation process. Metal organic frameworks (MOFs) have become commonly utilized materials in recent years because of their distinguishing pore architectures, metal nodes easy accessibility, large specific surface areas, shape, and adaptable function. This review outlines the most significant developments in current work on developing improved MOFs for enhancing EWS. The benefits and drawbacks of MOFs are first discussed in this review. Then, some cutting-edge methods for successfully modifying MOFs are also highlighted. Recent progress on nickel (Ni) and iron (Fe) based MOFs have been critically discussed. Finally, a comprehensive analysis of the existing challenges and prospects for Ni- and Fe-based MOFs are summarized.

6.
Chemosphere ; 350: 141061, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159729

RESUMEN

The diffusive gradients in thin films (DGT) technique serves as a passive sampling method, inducing analyte transport and concentration. Its application is widespread in assessing labile components of metals, organic matter, and nutrients across various environmental media such as water, sediments, and saturated soils. The DGT devices effectively reduce the porewater concentration through irreversible binding of solutes, consequently promoting the release of labile species from the soil/sediment solid phase. However, the precise quantification of simultaneous adsorption and desorption of labile species using DGT devices alone remains a challenge. To address this challenge, the DGT-Induced Fluxes in Soils and Sediments (DIFS) model was developed. This model simulates analyte kinetics in solid phases, solutions, and binding resins by incorporating factors such as soil properties, resupply parameters, and kinetic principles. While the DIFS model has been iteratively improved to increase its accuracy in portraying kinetic behavior in soil/sediment, researchers' incomplete comprehension of it still results in unrealistic fitting outcomes and an oversight of the profound implications posed by kinetic parameters during implementation. This review provides a comprehensive overview of the optimization and utilization of DIFS models, encompassing fundamental concepts behind DGT devices and DIFS models, the kinetic interpretation of DIFS parameters, and instances where the model has been applied to study soils and sediments. It also highlights preexisting limitations of the DIFS model and offers suggestions for more precise modeling in real-world environments.


Asunto(s)
Metales , Suelo , Suelo/química , Difusión , Cinética , Adsorción , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química
7.
J Colloid Interface Sci ; 652(Pt B): 1325-1337, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659304

RESUMEN

Mesoporous carbon spheres (MCSs) show great potential for using as high-performance anodes in potassium-ion batteries (PIBs). Design and synthesis of MCSs with suitable multiscale structures and heteroatom doping or co-doping in MCSs are successfully employed to optimize the ion and electron transportation, however, it is still a challenge to explore MCS-based anodes with satisfactory potassium storage performance. In this work, we report novel S-doped MCS samples with abundant internal surfaces for potassium storage. The S doping sites are controlled during the synthesis, and the effect of different doping sites on the potassium storage is systematically studied. It is found that S doping between the carbon layers enlarges interlayer spacing and facilitates potassium ion adsorption. Consequently, the optimized sample shows an excellent rate capability of 144 mAh/g at 5.0 A/g, and a high reversible specific capacity of 325 mAh/g after 100 cycles at 0.1 A/g with a capacity retention of 91.2%. The important role of element doping sites on ion adsorption and ion storage performance is confirmed by theoretical investigations. Controlling the doping sites in MCSs provides a new approach to designing high-performance electrodes for energy storage and conversion applications.

8.
Mater Horiz ; 10(5): 1479-1538, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37040188

RESUMEN

Li7La3Zr2O12 (LLZO)-based solid-state Li batteries (SSLBs) have emerged as one of the most promising energy storage systems due to the potential advantages of solid-state electrolytes (SSEs), such as ionic conductivity, mechanical strength, chemical stability and electrochemical stability. However, there remain several scientific and technical obstacles that need to be tackled before they can be commercialised. The main issues include the degradation and deterioration of SSEs and electrode materials, ambiguity in the Li+ migration routes in SSEs, and interface compatibility between SSEs and electrodes during the charging and discharging processes. Using conventional ex situ characterization techniques to unravel the reasons that lead to these adverse results often requires disassembly of the battery after operation. The sample may be contaminated during the disassembly process, resulting in changes in the material properties within the battery. In contrast, in situ/operando characterization techniques can capture dynamic information during cycling, enabling real-time monitoring of batteries. Therefore, in this review, we briefly illustrate the key challenges currently faced by LLZO-based SSLBs, review recent efforts to study LLZO-based SSLBs using various in situ/operando microscopy and spectroscopy techniques, and elaborate on the capabilities and limitations of these in situ/operando techniques. This review paper not only presents the current challenges but also outlines future developmental prospects for the practical implementation of LLZO-based SSLBs. By identifying and addressing the remaining challenges, this review aims to enhance the comprehensive understanding of LLZO-based SSLBs. Additionally, in situ/operando characterization techniques are highlighted as a promising avenue for future research. The findings presented here can serve as a reference for battery research and provide valuable insights for the development of different types of solid-state batteries.

9.
Adv Mater ; 35(24): e2210166, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36625270

RESUMEN

Materials derived from metal-organic frameworks (MOFs) have demonstrated exceptional structural variety and complexity and can be synthesized using low-cost scalable methods. Although the inherent instability and low electrical conductivity of MOFs are largely responsible for their low uptake for catalysis and energy storage, a superior alternative is MOF-derived metal-based derivatives (MDs) as these can retain the complex nanostructures of MOFs while exhibiting stability and electrical conductivities of several orders of magnitude higher. The present work comprehensively reviews MDs in terms of synthesis and their nanostructural design, including oxides, sulfides, phosphides, nitrides, carbides, transition metals, and other minor species. The focal point of the approach is the identification and rationalization of the design parameters that lead to the generation of optimal compositions, structures, nanostructures, and resultant performance parameters. The aim of this approach is to provide an inclusive platform for the strategies to design and process these materials for specific applications. This work is complemented by detailed figures that both summarize the design and processing approaches that have been reported and indicate potential trajectories for development. The work is also supported by comprehensive and up-to-date tabular coverage of the reported studies.

10.
J Colloid Interface Sci ; 634: 63-73, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36528972

RESUMEN

Graphite is a widely used anode material in commercial lithium-ion batteries (LIBs), but its low theoretical specific capacity and extremely low redox potential limit its application in high-performance lithium-ion batteries. However, developing lithium-ion battery anode with high specific capacity and suitable working potential is still challenging. At present, conductive polymers with excellent properties and graphite-like structures are widely used in the field of electrochemistry, but their Li+ storage mechanism and kinetics are still unclear and need to be further investigated. Therefore, we synthesized the conducting polymer Fe3(2, 3, 6, 7, 10, 11-hexahydroxytriphenylene)2 (Fe-CAT) by the liquid phase method, in which the d-π conjugated structure and pores facilitate electron transfer and electrolyte infiltration, improving the comprehensive electrochemical performance. The Fe-CAT electrode displays a high capacity of 950 mA h g-1 at 200 mA g-1. At the current density of 5.0 A g-1, the electrode shows a reversible capacity of 322 mA h g-1 after 1000 cycles. The average lithiation voltage plateau is âˆ¼ 0.79 V. The combination of ex-situ characterization techniques and electrochemical kinetic analysis reveals the source of the excellent electrochemical performance of Fe-CAT. During the charging/discharging process, the aromatic ring in the organic ligand is involved in the redox reaction. Such results will provide new insights for the design of next-generation high-performance electrode materials for LIBs.

11.
Nanotechnology ; 33(44)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35878519

RESUMEN

Liquid phase transmission electron microscopy (TEM) provides a useful means to study a wide range of dynamics in solution with near-atomic spatial resolution and sub-microsecond temporal resolution. However, it is still a challenge to control the chemical environment (such as the flow of liquid, flow rate, and the liquid composition) in a liquid cell, and evaluate its effect on the various dynamic phenomena. In this work, we have systematically demonstrated the flow performance of anin situliquid TEM system, which is based on 'on-chip flow' driven by external pressure pumps. We studied the effects of different chemical environments in the liquid cell as well as the electrochemical potential on the deposition and dissolution behavior of Cu crystals. The results show that uniform Cu deposition can be obtained at a higher liquid flow rate (1.38µl min-1), while at a lower liquid flow rate (0.1µl min-1), the growth of Cu dendrites was observed. Dendrite formation could be further promoted byin situaddition of foreign ions, such as phosphates. The generality of this technique was confirmed by studying Zn electrodeposition. Our direct observations not only provide new insights into understanding the nucleation and growth but also give guidelines for the design and synthesis of desired nanostructures for specific applications. Finally, the capability of controlling the chemical environment adds another dimension to the existing liquid phase TEM technique, extending the possibilities to study a wide range of dynamic phenomena in liquid media.

12.
Mater Horiz ; 9(2): 524-546, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-34806103

RESUMEN

Metal tellurides (MTs) have emerged as highly promising candidate anode materials for state-of-the-art lithium-ion batteries (LIBs) and sodium ion batteries (SIBs). This is owing to the unique crystal structure, high intrinsic conductivity, and high trap density of such materials. The present work delivers a detailed discussion on the latest research and progress associated with the use of MTs for LIBs/SIBs with a focus on reaction mechanisms, challenges, electrochemical performance, and synthesis strategies. Further, the prospects and future development of MT anode materials are discussed in terms of strategies to overcome the existing limitations. This review provides both an in-depth understanding of MTs and provides the driving force for expanding research on MTs for energy storage and conversion applications.

13.
Chem Soc Rev ; 50(18): 10116-10211, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34542117

RESUMEN

Oxide perovskites have emerged as an important class of materials with important applications in many technological areas, particularly thermocatalysis, electrocatalysis, photocatalysis, and energy storage. However, their implementation faces numerous challenges that are familiar to the chemist and materials scientist. The present work surveys the state-of-the-art by integrating these two viewpoints, focusing on the critical role that defect engineering plays in the design, fabrication, modification, and application of these materials. An extensive review of experimental and simulation studies of the synthesis and performance of oxide perovskites and devices containing these materials is coupled with exposition of the fundamental and applied aspects of defect equilibria. The aim of this approach is to elucidate how these issues can be integrated in order to shed light on the interpretation of the data and what trajectories are suggested by them. This critical examination has revealed a number of areas in which the review can provide a greater understanding. These include considerations of (1) the nature and formation of solid solutions, (2) site filling and stoichiometry, (3) the rationale for the design of defective oxide perovskites, and (4) the complex mechanisms of charge compensation and charge transfer. The review concludes with some proposed strategies to address the challenges in the future development of oxide perovskites and their applications.

14.
Chemistry ; 27(58): 14418-14426, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34486173

RESUMEN

Perovskite oxides are regarded as promising electrocatalysts for water splitting due to their cost-effectiveness, high efficiency and durability in the oxygen evolution reaction (OER). Despite these advantages, a fundamental understanding of how critical structural parameters of perovskite electrocatalysts influence their activity and stability is lacking. Here, we investigate the impact of structural defects on OER performance for representative LaNiO3 perovskite electrocatalysts. Hydrogen reduction of 700 °C calcined LaNiO3 induces a high density of surface oxygen vacancies, and confers significantly enhanced OER activity and stability compared to unreduced LaNiO3 ; the former exhibit a low onset overpotential of 380 mV at 10 mA cm-2 and a small Tafel slope of 70.8 mV dec-1 . Oxygen vacancy formation is accompanied by mixed Ni2+ /Ni3+ valence states, which quantum-chemical DFT calculations reveal modify the perovskite electronic structure. Further, it reveals that the formation of oxygen vacancies is thermodynamically more favourable on the surface than in the bulk; it increases the electronic conductivity of reduced LaNiO3 in accordance with the enhanced OER activity that is observed.

15.
Nanoscale ; 13(14): 6764-6771, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33885478

RESUMEN

The architectural design of nanocatalysts plays a critical role in the achievement of high densities of active sites but current technologies are hindered by process complexity and limited scaleability. The present work introduces a rapid, flexible, and template-free method to synthesize three-dimensional (3D), mesoporous, CeO2-x nanostructures comprised of extremely thin holey two-dimensional (2D) nanosheets of centimetre-scale. The process leverages the controlled conversion of stacked nanosheets of a newly developed Ce-based coordination polymer into a range of stable oxide morphologies controllably differentiated by the oxidation kinetics. The resultant polycrystalline, hybrid, 2D-3D CeO2-x exhibits high densities of defects and surface area as high as 251 m2 g-1, which yield an outstanding CO conversion performance (T90% = 148 °C) for all oxides. Modification by the creation of heterojunction nanostructures using transition metal oxides (TMOs) results in further improvements in performance (T90% = 88 °C), which are interpreted in terms of the active sites associated with the TMOs that are identified through structural analyses and density functional theory (DFT) simulations. This unparalleled catalytic performance for CO conversion is possible through the ultra-high surface areas, defect densities, and pore volumes. This technology offers the capacity to establish efficient pathways to engineer nanostructures of advanced functionalities for catalysis.

16.
RSC Adv ; 10(14): 8130-8139, 2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35497841

RESUMEN

Aluminum trimesate-based MOF (MIL-96-(Al)) has attracted intense attention due to its high chemical stability and strong CO2 adsorption capacity. In this study, CO2 capture and selectivity of MIL-96-Al was further improved by the coordination of the second metal Ca. To this end, a series of MIL-96(Al)-Ca were hydrothermally synthesised by a one-pot method, varying the molar ratio of Ca2+/Al3+. It is shown that the variation of Ca2+/Al3+ ratio results in significant changes in crystal shape and size. The shape varies from the hexagonal rods capped in the ends by a hexagonal pyramid in MIL-96(Al) without Ca to the thin hexagonal disks in MIL-96(Al)-Ca4 (the highest Ca content). Adsorption studies reveal that the CO2 adsorption on MIL-96(Al)-Ca1 and MIL-96(Al)-Ca2 at pressures up to 950 kPa is vastly improved due to the enhanced pore volumes compared to MIL-96(Al). The CO2 uptake on these materials measured in the above sequence is 10.22, 9.38 and 8.09 mmol g-1, respectively. However, the CO2 uptake reduces to 5.26 mmol g-1 on MIL-96(Al)-Ca4. Compared with MIL-96(Al)-Ca1, the N2 adsorption in MIL-96(Al)-Ca4 is significantly reduced by 90% at similar operational conditions. At 100 and 28.8 kPa, the selectivity of MIL-96(Al)-Ca4 to CO2/N2 reaches up to 67 and 841.42, respectively, which is equivalent to 5 and 26 times the selectivity of MIL-96(Al). The present findings highlight that MIL-96(Al) with second metal Ca coordination is a potential candidate as an alternative CO2 adsorbent for practical applications.

17.
Chem Commun (Camb) ; 56(7): 1022-1025, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31867592

RESUMEN

A series of unsupported and supported vanadium phosphorus oxide catalysts were prepared by employing a new strategy, which significantly reduced the complexity of catalyst preparation. The greatly simplified catalyst fabrication benefits a greener and lower-cost process for practical applications. The currently fabricated systems showed ca. 90% target product(s) selectivity with a promising yield as well as catalyst durability.

19.
Adv Mater ; 31(52): e1905288, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31693232

RESUMEN

Holey 2D metal oxides have shown great promise as functional materials for energy storage and catalysts. Despite impressive performance, their processing is challenged by the requirement of templates plus capping agents or high temperatures; these materials also exhibit excessive thicknesses and low yields. The present work reports a metal-based coordination polymer (MCP) strategy to synthesize polycrystalline, holey, metal oxide (MO) nanosheets with thicknesses as low as two-unit cells. The process involves rapid exfoliation of bulk-layered, MCPs (Ce-, Ti-, Zr-based) into atomically thin MCPs at room temperature, followed by transformation into holey 2D MOs upon the removal of organic linkers in aqueous solution. Further, this work represents an extra step for decorating the holey nanosheets using precursors of transition metals to engineer their band alignments, establishing a route to optimize their photocatalysis. The work introduces a simple, high-yield, room-temperature, and template-free approach to synthesize ultrathin holey nanosheets with high-level functionalities.

20.
Artículo en Inglés | MEDLINE | ID: mdl-31739441

RESUMEN

Pond water as surface water has certain environmental impacts on environmental media such as groundwater, lakes, atmosphere, and soil. Organic pollutants present in pond water may pose health risks to humans, but research on organic pollutants in pond water is rare. Here, taking pond water collected in rural areas of Hebei province as the sample, we analyzed and evaluated four categories of semi-volatile organic compounds (SVOCs), including 11 phenolic compounds, 7 aniline compounds, 16 parent polycyclic aromatic hydrocarbons (PAHs), 14 PAH derivatives, and 16 phthalate esters (PAEs). The results show that the 10 water samples contained 26.2-17034 ng/L of Σ phenols, 33.7-2612 ng/L of Σ anilines, 33.9-1651 ng/L of Σ PAHs, and 59.0-2800 ng/L of Σ PAEs. Furthermore, non-carcinogenic risk and carcinogenic risk caused by SVOCs through direct ingestion and dermal exposure were also assessed. The current levels of non-carcinogenic risks and carcinogenic risks through these two means of exposure are within acceptable limits, except for the site 1 and site 5 in Hebei province where a total cancer risk exceeds 10-6. It can be concluded that the pond water studied had a low risk of carcinogenicity to the human.


Asunto(s)
Monitoreo del Ambiente/métodos , Agua Dulce/química , Agua Subterránea/química , Hidrocarburos Policíclicos Aromáticos/química , Estanques/química , Medición de Riesgo/métodos , Compuestos Orgánicos Volátiles/análisis , Contaminantes Químicos del Agua/química , China , Agua Dulce/análisis , Agua Subterránea/análisis , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Estanques/análisis , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...