Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Eur J Pharmacol ; 983: 176981, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39241943

RESUMEN

AIMS: Hypertension is associated with an increased activity of matrix metalloproteinase (MMP)-2 in the vasculature, which, in turn, proteolyzes extra- and intracellular proteins that lead to vascular dysfunction. The activity of sarcoplasmic reticulum calcium ATPase (SERCA) is decreased in the aortas of hypertensive rats. Increased activity of MMP-2 proteolyzed SERCA in rat heart during ischemia and reperfusion injury, thus impairing cardiac function. Therefore, we examined whether increased activity of MMP-2 in early hypertension contributes to proteolyze SERCA in the aortas, thus leading to maladaptive vascular remodeling and dysfunction. MAIN METHODS: Male Sprague-Dawley rats were submitted to two kidney-one clip (2K-1C) or Sham surgery and treated with doxycycline. Systolic blood pressure (SBP) was assessed by tail-cuff plethysmography. After 7 days, aortas were collected for zymography assays, Western blot to SERCA, ATPase activity assay, vascular reactivity, Ki-67 immunofluorescence and hematoxylin/eosin stain. KEY FINDINGS: SBP was increased in 2K-1C rats and doxycycline did not reduce it, but decreased MMP-2 activity and prevented SERCA proteolysis in aortas. Cross sectional area, media to lumen ratio and Ki-67 were all increased in the aortas of hypertensive rats and doxycycline decreased Ki-67. In 2K-1C rats, arterial relaxation to acetylcholine was impaired and doxycycline ameliorated it. SIGNIFICANCE: doxycycline reduced MMP-2 activity in aortas of 2K-1C rats and prevented proteolysis of SERCA and its dysfunction, thus ameliorating hypertension-induced vascular dysfunction.


Asunto(s)
Presión Sanguínea , Hipertensión , Metaloproteinasa 2 de la Matriz , Proteolisis , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Animales , Masculino , Ratas , Aorta/efectos de los fármacos , Aorta/fisiopatología , Aorta/patología , Aorta/metabolismo , Presión Sanguínea/efectos de los fármacos , Doxiciclina/farmacología , Hipertensión/fisiopatología , Hipertensión/metabolismo , Hipertensión/enzimología , Hipertensión/tratamiento farmacológico , Metaloproteinasa 2 de la Matriz/metabolismo , Proteolisis/efectos de los fármacos , Ratas Sprague-Dawley , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Remodelación Vascular/efectos de los fármacos
2.
Int J Biol Macromol ; 279(Pt 1): 135066, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39197621

RESUMEN

Disintegrins are a class of peptides found in snake venom that inhibit the activity of integrins, which are essential cell adhesion receptors in tumor progression and development. In this work, moojecin, a RGD disintegrin, was isolated from Bothrops moojeni snake venom, and its antitumor potential in acute myeloid leukemia (AML) HL-60 and THP-1 cells was characterized. The isolation was performed using a C18 reverse-phase column in two chromatographic steps, and its molecular mass is 7417.84 Da. N-terminal and de novo sequencing was performed to identify moojecin. Moojecin did not show cytotoxic or antiproliferative activity in THP-1 and HL-60 at tested concentrations, but it exhibited significant antimigratory activity in both cell lines, as well as inhibition of angiogenesis in the tube formation assay on Matrigel in a dose-dependent manner. A stronger interaction with integrin αVß3 was shown in integrin interaction assays compared to α5ß1, and the platelet aggregation assay indicated an IC50 of 5.039 µg/mL. Preliminary evaluation of disintegrin toxicity revealed no incidence of hemolysis or cytotoxic effects on peripheral blood mononuclear cells (PBMCs) across the tested concentrations. Thus, this is the first study to report the isolation, functional and structural characterization of a disintegrin from B. moojeni venom and bring a new perspective to assist in AML treatment.


Asunto(s)
Antineoplásicos , Bothrops , Desintegrinas , Leucemia Mieloide Aguda , Humanos , Desintegrinas/farmacología , Desintegrinas/química , Desintegrinas/aislamiento & purificación , Leucemia Mieloide Aguda/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Células HL-60 , Venenos de Crotálidos/química , Agregación Plaquetaria/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Serpientes Venenosas
3.
Artículo en Inglés | MEDLINE | ID: mdl-38915449

RESUMEN

Background: Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. There is no effective treatment for neurodegenerative diseases. Snake venoms are a cocktail of proteins and peptides with great therapeutic potential and might be useful in the treatment of neurodegenerative diseases. Crotapotin is the acid chain of crotoxin, the major component of Crotalus durissus collilineatus venom. PD is characterized by low levels of neurotrophins, and synaptic and axonal degeneration; therefore, neurotrophic compounds might delay the progression of PD. The neurotrophic potential of crotapotin has not been studied yet. Methods: We evaluated the neurotrophic potential of crotapotin in untreated PC12 cells, by assessing the induction of neurite outgrowth. The activation of the NGF signaling pathway was investigated through pharmacological inhibition of its main modulators. Additionally, its neuroprotective and neurorestorative effects were evaluated by assessing neurite outgrowth and cell viability in PC12 cells treated with the dopaminergic neurotoxin MPP+ (1-methyl-4-phenylpyridinium), known to induce Parkinsonism in humans and animal models. Results: Crotapotin induced neuritogenesis in PC12 cells through the NGF-signaling pathway, more specifically, by activating the NGF-selective receptor trkA, and the PI3K/Akt and the MAPK/ERK cascades, which are involved in neuronal survival and differentiation. In addition, crotapotin had no cytotoxic effect and protected PC12 cells against the inhibitory effects of MPP+ on cell viability and differentiation. Conclusion: These findings show, for the first time, that crotapotin has neurotrophic/neuroprotective/neurorestorative potential and might be beneficial in Parkinson's disease. Additional studies are necessary to evaluate the toxicity of crotapotin in other cell models.

4.
Toxicon ; 246: 107797, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38852745

RESUMEN

The Brazilian Amazon is home to a rich fauna of scorpion species of medical importance, some of them still poorly characterized regarding their biological actions and range of clinical symptoms after envenoming. The Amazonian scorpion species Tityus strandi and Tityus dinizi constitute some of the scorpions in this group, with few studies in the literature regarding their systemic repercussions. In the present study, we characterized the clinical, inflammatory, and histopathological manifestations of T. strandi and T. dinizi envenoming in a murine model using Balb/c mice. The results show a robust clinical response based on clinical score, hyperglycemia, leukocytosis, increased cytokines, and histopathological changes in the kidneys and lungs. Tityus strandi envenomed mice presented more prominent clinical manifestations when compared to Tityus dinizi, pointing to the relevance of this species in the medical scenario, with both species inducing hyperglycemia, leukocytosis, increased cytokine production in the peritoneal lavage, increased inflammatory infiltrate in the lungs, and acute tubular necrosis after T. strandi envenoming. The results presented in this research can help to understand the systemic manifestations of scorpion accidents in humans caused by the target species of the study and point out therapeutic strategies in cases of scorpionism in remote regions of the Amazon.


Asunto(s)
Ratones Endogámicos BALB C , Picaduras de Escorpión , Venenos de Escorpión , Escorpiones , Animales , Venenos de Escorpión/toxicidad , Ratones , Modelos Animales de Enfermedad , Citocinas/metabolismo , Brasil , Leucocitosis/inducido químicamente , Pulmón/patología , Pulmón/efectos de los fármacos , Masculino , Riñón/patología , Riñón/efectos de los fármacos , Femenino
5.
Toxicon ; 243: 107746, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38704124

RESUMEN

Our study presents the anticancer potential of crotamine from Crotalus durissus terrificus in human prostate cancer cell line DU-145. Crotamine isolation was conducted through RP-FPLC, its molecular mass analyzed by MALDI-TOF was 4881.4 kDa, and N-terminal sequencing confirmed crotamine identity. Crotamine demonstrated no toxicity and did not inhibit migration in HUVEC cells. Although no cell death occurred in DU-145 cells, crotamine inhibited their migration. Thus, crotamine presented potential to be a prototype of anticancer drug.


Asunto(s)
Antineoplásicos , Movimiento Celular , Venenos de Crotálidos , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Venenos de Crotálidos/toxicidad , Antineoplásicos/farmacología , Crotalus , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Animales
6.
Artículo en Inglés | MEDLINE | ID: mdl-38317796

RESUMEN

Tityus serrulatus scorpion is responsible for a significant number of envenomings in Brazil, ranging from mild to severe, and in some cases, leading to fatalities. While supportive care is the primary treatment modality, moderate and severe cases require antivenom administration despite potential limitations and adverse effects. The remarkable proliferation of T. serrulatus scorpions, attributed to their biology and asexual reproduction, contributes to a high incidence of envenomation. T. serrulatus scorpion venom predominantly consists of short proteins acting as neurotoxins (α and ß), that primarily target ion channels. Nevertheless, high molecular weight compounds, including metalloproteases, serine proteases, phospholipases, and hyaluronidases, are also present in the venom. These compounds play a crucial role in envenomation, influencing the severity of symptoms and the spread of venom. This review endeavors to comprehensively understand the T. serrulatus scorpion venom by elucidating the primary high molecular weight compounds and exploring their potential contributions to envenomation. Understanding these compounds' mechanisms of action can aid in developing more effective treatments and prevention strategies, ultimately mitigating the impact of scorpion envenomation on public health in Brazil.

7.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;30: e20230046, 2024. tab, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1528980

RESUMEN

Tityus serrulatus scorpion is responsible for a significant number of envenomings in Brazil, ranging from mild to severe, and in some cases, leading to fatalities. While supportive care is the primary treatment modality, moderate and severe cases require antivenom administration despite potential limitations and adverse effects. The remarkable proliferation of T. serrulatus scorpions, attributed to their biology and asexual reproduction, contributes to a high incidence of envenomation. T. serrulatus scorpion venom predominantly consists of short proteins acting as neurotoxins (α and ß), that primarily target ion channels. Nevertheless, high molecular weight compounds, including metalloproteases, serine proteases, phospholipases, and hyaluronidases, are also present in the venom. These compounds play a crucial role in envenomation, influencing the severity of symptoms and the spread of venom. This review endeavors to comprehensively understand the T. serrulatus scorpion venom by elucidating the primary high molecular weight compounds and exploring their potential contributions to envenomation. Understanding these compounds' mechanisms of action can aid in developing more effective treatments and prevention strategies, ultimately mitigating the impact of scorpion envenomation on public health in Brazil.


Asunto(s)
Animales , Venenos de Escorpión/análisis , Venenos de Escorpión/química , Péptido Hidrolasas , Fosfolipasas , Glicoproteínas , Hialuronoglucosaminidasa
8.
Artículo en Inglés | MEDLINE | ID: mdl-37818211

RESUMEN

Snake venom disintegrins are low molecular weight, non-enzymatic proteins rich in cysteine, present in the venom of snakes from the families Viperidae, Crotalidae, Atractaspididae, Elapidae, and Colubridae. This family of proteins originated in venom through the proteolytic processing of metalloproteinases (SVMPs), which, in turn, evolved from a gene encoding an A Disintegrin And Metalloprotease (ADAM) molecule. Disintegrins have a recognition motif for integrins in their structure, allowing interaction with these transmembrane adhesion receptors and preventing their binding to proteins in the extracellular matrix and other cells. This interaction gives disintegrins their wide range of biological functions, including inhibition of platelet aggregation and antitumor activity. As a result, many studies have been conducted in an attempt to use these natural compounds as a basis for developing therapies for the treatment of various diseases. Furthermore, the FDA has approved Tirofiban and Eptifibatide as antiplatelet compounds, and they are synthesized from the structure of echistatin and barbourin, respectively. In this review, we discuss some of the main functional and structural characteristics of this class of proteins and their potential for therapeutic use.

9.
Vascul Pharmacol ; 152: 107211, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37607602

RESUMEN

INTRODUCTION: Increased matrix metalloproteinase (MMP)-2 activity contributes to increase vascular smooth muscle cell (VSMC) proliferation in the aorta in early hypertension by cleaving many proteins of the extracellular matrix. Cleaved products from type I collagen may activate focal adhesion kinases (FAK) that trigger migration and proliferation signals in VSMC. We therefore hypothesized that increased activity of MMP-2 proteolyzes type I collagen in aortas of hypertensive rats, and thereby, induces FAK activation, thus leading to increased VSMC proliferation and hypertrophic remodeling in early hypertension. METHODS: Male Sprague-Dawley rats were submitted to renovascular hypertension by the two kidney-one clip (2K1C) model and treated with doxycycline (30 mg/kg/day) by gavage from the third to seventh-day post-surgery. Controls were submitted to sham surgery. Systolic blood pressure (SBP) was measured daily by tail-cuff plethysmography and the aortas were processed for zymography and Western blot for MMP-2, pFAK/FAK, integrins and type I collagen. Mass spectrometry, morphological analysis and Ki67 immunofluorescence were also done to identify collagen changes and VSMC proliferation. A7r5 cells were stimulated with collagen and treated with the MMP inhibitors (doxycycline or ARP-100), and with the FAK inhibitor PND1186 for 24 h. Cells were lysed and evaluated by Western blot for pFAK/FAK. RESULTS: 2K1C rats developed elevated SBP in the first week as well as increased expression and activity of MMP-2 in the aorta (p < 0.05 vs. Sham). Treatment with doxycycline reduced both MMP activity and type I collagen proteolysis in aortas of 2K1C rats (p < 0.05). Increased pFAK/FAK and increased VSMC proliferation (p < 0.05 vs. Sham groups) were also seen in the aortas of 2K1C and doxycycline decreased both parameters (p < 0.05). Higher proliferation of VSMC contributed to hypertrophic remodeling as seen by increased media/lumen ratio and cross sectional area (p < 0.05 vs Sham groups). In cell culture, MMP-2 cleaves collagen, an effect reversed by MMP inhibitors (p < 0.05). Increased levels of pFAK/FAK were observed when collagen was added in the culture medium (p < 0.05 vs control) and MMP and FAK inhibitors reduced this effect. CONCLUSIONS: Increase in MMP-2 activity proteolyzes type I collagen in the aortas of 2K1C rats and contributes to activate FAK and induces VSMC proliferation during the initial phase of hypertension.


Asunto(s)
Hipertensión , Metaloproteinasa 2 de la Matriz , Animales , Masculino , Ratas , Aorta , Proliferación Celular , Colágeno Tipo I , Doxiciclina/farmacología , Proteína-Tirosina Quinasas de Adhesión Focal , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Músculo Liso Vascular , Proteolisis , Ratas Sprague-Dawley
10.
Toxicon ; 230: 107171, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37211059

RESUMEN

There are several scorpion species of medical relevance around the world. Some of them are well characterized by their toxins and clinical outcomes. Brazilian Amazon has a great amount of these arthropods that have an impact in the scorpionism events specifically in this region of Brazil. Recently, several studies pointed out the immune system activation during scorpion envenouming as an important facet of scorpionism, inducing a sepsis-like state that culminates in clinical severity and death. In this work, we characterized the macrophage response of three species of clinical relevance in Brazilian Amazon: Tityus silvestris, T. metuendus and T. obscurus and one specie with no toxic effects to humans, Brotheas amazonicus. All the four species analyzed were able to induce pro- and anti-inflammatory cytokine production in a J774.1 murine macrophage model. This activation was dependent on TLR2/TLR4/MyD88 activation and abolished by TLRs antagonists. These results suggest that the venoms of the four species analyzed were able to induce macrophage response in agreement to the well-established immune activation by T. serrulatus venom. Our findings provide new insights into the clinical repercussions of scorpionism of uncharacterized species and point to new biotechnological applications of these venoms and possible supportive therapies in scorpionism.


Asunto(s)
Picaduras de Escorpión , Venenos de Escorpión , Humanos , Ratones , Animales , Brasil , Venenos de Escorpión/toxicidad , Escorpiones , Macrófagos
11.
Toxicon, v. 228, 107125, abr. 2023
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4865

RESUMEN

Tityus obscurus has caused mild, moderate and severe accidents of medical relevance in the eastern Brazilian Amazon and French Guiana. Tityus obscurus has sexual dimorphism although males and females have uniform black coloration. In the Amazon, one of the habitats of this scorpion is seasonally flooded forests (igapós and várzeas). However, most stings occur in terra firme forest areas (non-flooded region), where most rural communities are located. Adults and children stung by T. obscurus may experience an “electric shock” sensation for more than 30 h after the sting. Our data shows that people inhabiting remote forest areas, including rubber tappers, fishermen and indigenous people, with no access to anti-scorpion serum, use parts of native plants, such as seeds and leaves, against pain and vomiting caused by scorpion stings. Although there is a technical effort to produce and distribute antivenoms in the Amazon, many cases of scorpion stings are geographically unpredictable in this region, due to the lack of detailed knowledge of the natural distribution of these animals. In this manuscript, we compile information on the natural history of T. obscurus and the impact of its envenoming on human health. We identify the natural sites that host this scorpion in the Amazon, in order to warn about the risk of human envenoming. The use of specific antivenom serum is the recommended treatment for accidents involving venomous animals. However, atypical symptoms not neutralized by the available commercial antivenom are reported in the Amazon region. Facing this scenario, we present some challenges to the study of venomous animals in the Amazon rainforest and possible experimental bottlenecks and perspectives for establishing a method aimed at producing an efficient antivenom.

12.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;29: e20230039, 2023. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1514466

RESUMEN

Snake venom disintegrins are low molecular weight, non-enzymatic proteins rich in cysteine, present in the venom of snakes from the families Viperidae, Crotalidae, Atractaspididae, Elapidae, and Colubridae. This family of proteins originated in venom through the proteolytic processing of metalloproteinases (SVMPs), which, in turn, evolved from a gene encoding an A Disintegrin And Metalloprotease (ADAM) molecule. Disintegrins have a recognition motif for integrins in their structure, allowing interaction with these transmembrane adhesion receptors and preventing their binding to proteins in the extracellular matrix and other cells. This interaction gives disintegrins their wide range of biological functions, including inhibition of platelet aggregation and antitumor activity. As a result, many studies have been conducted in an attempt to use these natural compounds as a basis for developing therapies for the treatment of various diseases. Furthermore, the FDA has approved Tirofiban and Eptifibatide as antiplatelet compounds, and they are synthesized from the structure of echistatin and barbourin, respectively. In this review, we discuss some of the main functional and structural characteristics of this class of proteins and their potential for therapeutic use.(AU)


Asunto(s)
Venenos de Serpiente/uso terapéutico , Desintegrinas/uso terapéutico
13.
Biochimie ; 200: 68-78, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35613667

RESUMEN

Vascular endothelial growth factors (VEGFs) are crucial molecules involved in the modulation of angiogenesis. Snake venom-derived VEGFs (svVEGFs) are known to contribute significantly to the envenoming due to their capacity of increasing vascular permeability. In our work, we isolated and analyzed the biochemical and functional properties of the VEGF from Crotalus durissus collilineatus venom (CdcVEGF). The venom was fractionated by reversed phase chromatography on FPLC system (Fast Protein Liquid Chromatography) and the eluted fractions were submitted to an ELISA assay using an anti-VEGF-F antibody, for identification of svVEGF. Positive fractions for svVEGF were submitted to SDS-PAGE and to an anion exchange chromatography to isolate the molecule. The subfractions were analyzed by ELISA and SDS-PAGE and six of them presented svVEGFs, named CdcVEGF1 (Q23-3), CdcVEGF2 (Q24-3), CdcVEGF3 (Q24-4), CdcVEGF4 (Q25-3), CdcVEGF5 (Q25-4), and CdcVEGF6 (Q25-5). Their structural characterization was accomplished by mass spectrometry analysis using MALDI-TOF to determine their molecular masses and UPLC-ESI-QTOF to determine their amino acid sequence. Interestingly, all isolated CdcVEGFs induced angiogenesis on HUVEC cells through tube formation on Matrigel when compared to culture medium (negative control). Moreover, CdcVEGF2 and CdcVEGF3 also induced a significant increase in tube formation when compared to the positive control (basic fibroblast growth factor - bFGF). Additionally, crotalid antivenom produced by the Instituto Butantan was able to recognize CdcVEGFs, demonstrating to be immunogenic. This study demonstrates that snake venom cocktail can reveal novel and important molecules, which are potential molecular tools to study diverse biological processes, such as angiogenesis.


Asunto(s)
Venenos de Crotálidos , Crotalus , Animales , Venenos de Crotálidos/química , Venenos de Serpiente , Factor A de Crecimiento Endotelial Vascular , Factores de Crecimiento Endotelial Vascular
14.
Toxicon ; 213: 27-42, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35405203

RESUMEN

Bothrops leucurus is considered as a snake of medical interest in the State of Bahia, Brazil. However, so far, there are no studies that provide a refined mapping of the composition of this venom. The aim of this work was to better understand the protein composition of B. leucurus snake venom and to isolate and biologically characterize the most abundant toxin, a basic PLA2-like. Shotgun proteomics approach identified 137 protein hits in B. leucurus venom subdivided into 19 protein families. The new basic PLA2-like toxin identified was denominated Bleu-PLA2-like, it and other proteoforms represents about 25% of the total proteins in the venom of B. leucurus and induces myotoxicity, inflammation and muscle damage. Immunoreactivity assays demonstrated that B. leucurus venom is moderately recognized by bothropic and crotalic antivenoms, and on the other hand, Bleu-PLA2-like and its proteoforms are poorly recognized. Our findings open doors for future studies in order to assess the systemic effects caused by this snake venom in order to better understand the toxinological implications of this envenomation and, consequently, to assist in the clinical treatment of victims.


Asunto(s)
Bothrops , Venenos de Crotálidos , Animales , Antivenenos/farmacología , Bothrops/metabolismo , Venenos de Crotálidos/metabolismo , Venenos de Crotálidos/toxicidad , Fosfolipasas A2/metabolismo , Venenos de Serpiente/metabolismo , Venenos de Serpiente/toxicidad
15.
Toxicon X ; 14: 100120, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35345480

RESUMEN

Fungal infections are becoming a serious problem of human diseases, being one of the most important fungal pathogens the yeast of the genus Candida. So far, fungal infection treatment faces different challenges, including the limited number of therapeutic drugs. Scorpions are known to be a valuable source of biologically active molecules, especially of peptide-derived molecules with a variety of biological effects and useful, lead compounds for drugs development. Here, we pioneer described the antifungal effect of venom, mucus, and the major toxin (Rc1) from Rhopalurus crassicauda scorpion. These results support the potential for Rc1 to be further investigated as a novel antifungal therapeutic to treat Candida infections.

16.
Toxins (Basel) ; 14(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35051015

RESUMEN

Some species of primitive predatory ants, despite living in a colony, exercise their hunting collection strategy individually; their venom is painful, paralyzing, digestive, and lethal for their prey, yet the toxins responsible for these effects are poorly known. Ectatomma opaciventre is a previously unrecorded solitary hunting ant from the Brazilian Cerrado. To overcome this hindrance, the present study performed the in vitro enzymatic, biochemical, and biological activities of E. opaciventre to better understand the properties of this venom. Its venom showed several proteins with masses ranging from 1-116 kDa, highlighting the complexity of this venom. Compounds with high enzymatic activity were described, elucidating different enzyme classes present in the venom, with the presence of the first L-amino acid oxidase in Hymenoptera venoms being reported. Its crude venom contributes to a state of blood incoagulability, acting on primary hemostasis, inhibiting collagen-induced platelet aggregation, and operating on the fibrinolysis of loose red clots. Furthermore, the E. opaciventre venom preferentially induced cytotoxic effects on lung cancer cell lines and three different species of Leishmania. These data shed a comprehensive portrait of enzymatic components, biochemical and biological effects in vitro, opening perspectives for bio-pharmacological application of E. opaciventre venom molecules.


Asunto(s)
Venenos de Hormiga/química , Venenos de Hormiga/toxicidad , Hormigas/química , Venenos de Crotálidos/química , Proteínas de Insectos/química , Venenos de Escorpión/química , Animales , Brasil
17.
Artículo en Inglés | MEDLINE | ID: mdl-34589120

RESUMEN

Scorpionism is a relevant medical condition in Brazil. It is responsible for most accidents involving venomous animals in the country, which leads to severe symptoms that can evolve to death. In recent years, an increase of almost 50% in the incidence of scorpionism has been observed in the Northern Region, where the highest severity of envenoming has been notified since the beginning of the 21st century. This review aims to provide an in-depth assessment of public data and reports on symptoms and epidemiology of envenoming, ecological aspects of scorpions, and characterization of venoms and toxins to access the gaps that need to be filled in the knowledge of the scorpion species of medical importance from the Brazilian Amazon. A systematic search using the string words "Amazon" and "scorpion" was performed on 11 databases. No restriction on date, language or status of the publication was applied. Reports not related to the Brazilian Amazon were excluded. Therefore, 88 studies remained. It is shown that populations of scorpions of medical importance, even of the same species, may present significant toxic variations peculiar to some regions in the Brazilian Amazon, and commercial scorpion antivenoms were not able to shorten the intensity and duration of neurological manifestations in patients stung by T. silvestris, T. apiacas or T. obscurus. It is also highlighted that the toxins responsible for triggering these alterations have not been elucidated yet and this is a fruitful field for the development of more efficient antivenoms. Furthermore, the geographic distribution of scorpions of the genus Tityus in the Brazilian Amazon was revised and updated. The cumulative and detailed information provided in this review may help physicians and scientists interested in scorpionism in the Brazilian Amazon.

18.
Biochem Pharmacol ; 193: 114744, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34453903

RESUMEN

PURPOSE: Cardiac transition from concentric (C-LVH) to eccentric left ventricle hypertrophy (E-LVH) is a maladaptive response of hypertension. Matrix metalloproteinases (MMPs), in particular MMP-2, may contribute to tissue remodeling by proteolyzing extra- and intracellular proteins. Troponin I and dystrophin are two potential targets of MMP-2 examined in this study and their proteolysis would impair cardiac contractile function. We hypothesized that MMP-2 contributes to the decrease in troponin I and dystrophin in the hypertensive heart and thereby controls the transition from C-LVH to E-LVH and cardiac dysfunction. METHODS: Male Wistar rats were divided into sham or two kidney-1 clip (2K-1C) hypertensive groups and treated with water (vehicle) or doxycycline (MMP inhibitor, 15 mg/kg/day) by gavage from the tenth to the sixteenth week post-surgery. Tail-cuff plethysmography, echocardiography, gelatin zymography, confocal microscopy, western blot, mass spectrometry, in silico protein analysis and immunofluorescence were performed. RESULTS: 6 out of 23 2K-1C rats (26%) had E-LVH followed by reduced ejection fraction. The remaining had C-LVH with preserved cardiac function. Doxycycline prevented the transition from C-LVH to E-LVH. MMP activity is increased in C-LVH and E-LVH hearts which was inhibited by doxycycline. This effect was associated with an increase in troponin I cleavage products and a decline in dystrophin in the left ventricle of E-LVH rats, which was prevented by doxycycline. CONCLUSION: Hypertension causes increased cardiac MMP-2 activity which proteolyzes troponin I and dystrophin, contributing to the transition from C-LVH to E-LVH and cardiac dysfunction.


Asunto(s)
Doxiciclina/farmacología , Distrofina/metabolismo , Hipertensión/complicaciones , Hipertrofia Ventricular Izquierda/etiología , Metaloproteinasa 2 de la Matriz/metabolismo , Troponina I/metabolismo , Animales , Antibacterianos/farmacología , Distrofina/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hipertrofia Ventricular Izquierda/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/genética , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Ratas , Ratas Wistar , Troponina I/genética
19.
Cytokine Growth Factor Rev ; 60: 133-143, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34090786

RESUMEN

Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis, a physiological process characterized by the formation of new vessels from a preexisting endothelium. VEGF has also been implicated in pathologic states, such as neoplasias, intraocular neovascular disorders, among other conditions. VEGFs are distributed in seven different families: VEGF-A, B, C, D, and PIGF (placental growth factor), which are identified in mammals; VEGF-E, which are encountered in viruses; and VEGF-F or svVEGF (snake venom VEGF) described in snake venoms. This is the pioneer review of svVEGF family, exploring its distribution among the snake venoms, molecular structure, main functions, and potential applications.


Asunto(s)
Venenos de Serpiente/química , Factores de Crecimiento Endotelial Vascular/química , Animales , Humanos , Estructura Molecular , Factor de Crecimiento Placentario
20.
Artículo en Inglés | MEDLINE | ID: mdl-33915386

RESUMEN

C-type lectin-like proteins found in snake venom, known as snaclecs, have important effects on hemostasis through targeting membrane receptors, coagulation factors and other hemostatic proteins. Here, we present the isolation and functional characterization of a snaclec isolated from Bothrops alternatus venom, designated as Baltetin. We purified the protein in three chromatographic steps (anion-exchange, affinity and reversed-phase chromatography). Baltetin is a dimeric snaclec that is approximately 15 and 25 kDa under reducing and non-reducing conditions, respectively, as estimated by SDS-PAGE. Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry and Edman degradation sequencing revealed that Baltetin is a heterodimer. The first 40 amino acid residues of the N-terminal region of Baltetin subunits share a high degree of sequence identity with other snaclecs. Baltetin had a specific, dose-dependent inhibitory effect on epinephrine-induced platelet aggregation in human platelet-rich plasma, inhibiting up to 69% of platelet aggregation. Analysis of the infrared spectra suggested that the interaction between Baltetin and platelets can be attributed to the formation of hydrogen bonds between the PO32- groups in the protein and PO2- groups in the platelet membrane. This interaction may lead to membrane lipid peroxidation, which prevents epinephrine from binding to its receptor. The present work suggests that Baltetin, a new C-type lectin-like protein isolated from B. alternatus venom, is the first snaclec to inhibit epinephrine-induced platelet aggregation. This could be of medical interest as a new tool for the development of novel therapeutic agents for the prevention and treatment of thrombotic disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA