Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Nano Lett ; 24(8): 2553-2560, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38363554

Molecular electronics targets tiny devices exploiting the electronic properties of the molecular orbitals, which can be tailored and controlled by the chemical structure and configuration of the molecules. Many functional devices have been experimentally demonstrated; however, these devices were operated in the low-frequency domain (mainly dc to MHz). This represents a serious limitation for electronic applications, although molecular devices working in the THz regime have been theoretically predicted. Here, we experimentally demonstrate molecular THz switches at room temperature. The devices consist of self-assembled monolayers of molecules bearing two conjugated moieties coupled through a nonconjugated linker. These devices exhibit clear negative differential conductance behaviors (peaks in the current-voltage curves), as confirmed by ab initio simulations, which were reversibly suppressed under illumination with a 30 THz wave. We analyze how the THz switching behavior depends on the THz wave properties (power and frequency), and we benchmark that these molecular devices would outperform actual THz detectors.

2.
Int J Mol Sci ; 24(10)2023 May 13.
Article En | MEDLINE | ID: mdl-37240061

Three new tetraphenylethene (TPE) push-pull chromophores exhibiting strong intramolecular charge transfer (ICT) are described. They were obtained via [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) click reactions on an electron-rich alkyne-tetrafunctionalized TPE (TPE-alkyne) using both 1,1,2,2-tetracyanoethene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) as electron-deficient alkenes. Only the starting TPE-alkyne displayed significant AIE behavior, whereas for TPE-TCNE, a faint effect was observed, and for TPE-TCNQ and TPE-F4-TCNQ, no fluorescence was observed in any conditions. The main ICT bands that dominate the UV-Visible absorption spectra underwent a pronounced red-shift beyond the near-infrared (NIR) region for TPE-F4-TCNQ. Based on TD-DFT calculations, it was shown that the ICT character shown by the compounds exclusively originated from the clicked moieties independently of the nature of the central molecular platform. Photothermal (PT) studies conducted on both TPE-TCNQ and TPE-F4-TCNQ in the solid state revealed excellent properties, especially for TPE-F4-TCNQ. These results indicated that CA-RE reaction of TCNQ or F4-TCNQ with donor-substituted are promising candidates for PT applications.


Alkynes , Nitriles , Cycloaddition Reaction
3.
Nanoscale ; 14(15): 5725-5742, 2022 Apr 14.
Article En | MEDLINE | ID: mdl-35348166

Two new photo-switchable terphenylthiazole molecules are synthesized and self-assembled as monolayers on Au and on ferromagnetic Co electrodes. The electron transport properties probed by conductive atomic force microscopy in ultra-high vacuum reveal a larger conductance of the light-induced closed (c) form than for the open (o) form. We report an unprecedented conductance ratio of up to 380 between the closed and open forms on Co for the molecule with the anchoring group (thiol) on the side of the two N atoms of the thiazole unit. This result is rationalized by Density Functional Theory (DFT) calculations coupled to the Non-Equilibrium Green's function (NEGF) formalism. These calculations show that the high conductance in the closed form is due to a strong electronic coupling between the terphenylthiazole molecules and the Co electrode that manifests by a resonant transmission peak at the Fermi energy of the Co electrode with a large broadening. This behavior is not observed for the same molecules self-assembled on gold electrodes. These high conductance ratios make these Co-based molecular junctions attractive candidates to develop and study switchable molecular spintronic devices.

4.
Nanoscale ; 13(14): 6977-6990, 2021 Apr 14.
Article En | MEDLINE | ID: mdl-33885499

We report the formation of self-assembled monolayers of a molecular photoswitch (azobenzene-bithiophene derivative, AzBT) on cobalt via a thiol covalent bond. We study the electrical properties of the molecular junctions formed with the tip of a conductive atomic force microscope under ultra-high vacuum. The statistical analysis of the current-voltage curves shows two distinct states of the molecule conductance, suggesting the coexistence of both the trans and cis azobenzene isomers on the surface. The cis isomer population (trans isomer) increases (decreases) upon UV light irradiation. The situation is reversed under blue light irradiation. The experiments are confronted to first-principle calculations performed on the molecular junctions with the Non-Equilibrium Green's Function formalism combined with Density Functional Theory (NEGF/DFT). The theoretical results consider two different molecular orientations for each isomer. Whereas the orientation does not affect the conductance of the trans isomer, it significantly modulates the conductance of the cis isomer and the resulting conductance ON/OFF ratio of the molecular junction. This helps identifying the molecular orientation at the origin of the observed current differences between the trans and cis forms. The ON state is associated to the trans isomer irrespective of its orientation in the junction, while the OFF state is identified as a cis isomer with its azobenzene moiety folded upward with respect to the bithiophene core. The experimental and calculated ON/OFF conductance ratios have a similar order of magnitude. This conductance ratio seems reasonable to make these Co-AzBT molecular junctions a good test-bed to further explore the relationship between the spin-polarized charge transport, the molecule conformation and the molecule-Co spinterface.

5.
Phys Chem Chem Phys ; 19(43): 29389-29401, 2017 Nov 08.
Article En | MEDLINE | ID: mdl-29075698

We report (time-dependent) density functional theory calculations characterizing the changes in the electronic and optical properties of oligothiophene dyes when grafted on a titania surface via a carboxylic acid or catechol moiety as anchoring group, in relation to their use in dye-sensitized solar cells. The broadening of the LUMO level of the compounds upon adsorption has been extracted from the computed electronic structures and used to estimate electron injection times into the conduction band of the oxide. The strongly coupled carboxylic-containing dyes lead to faster electron injection times compared to catechol-substituted dyes. This difference is ascribed to the electron-donating character of the catechol moiety that polarizes the dye LUMO away from the dye@titania interface. The absorption spectra simulated at the TD-DFT level indicate that the grafted carboxylic-thiophene dyes undergo an indirect injection mechanism (type I) in which an intramolecular excitation is created before the charge is transferred to titania. In contrast, catechol dyes with a short conjugation length for the thiophene backbone are type II sensitizers exhibiting a direct injection mechanism leading to a direct photoexcitation from the dye HOMO to the titania conduction band. A mixed character prevails for the injection in the case of catechol dyes containing a longer oligothiophene chain.

...