Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Cogn ; 180: 106202, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38991360

RESUMEN

Newborn visual fixation abilities predict future cognitive, perceptive, and motor skills. However, little is known about the factors associated with the newborn visual fixation, which is an indicator of neurocognitive abilities. We analyzed maternal biological and environmental characteristics associated with fine motor skills (visual tracking) in 1 month old infants. Fifty-one infants were tested on visual tracking tasks (Infant Visuomotor Behavior Assessment Scale/ Guide for the Assessment of Visual Ability in Infants) and classified according to visual conducts scores. Differences between groups were compared considering motor development (Alberta Infant Motor Scale) maternal mental health (Edinburgh Postnatal Depression Scale and Hamilton Anxiety Scale); home environment (Affordances in the Home Environment for Development Scale); maternal care (Coding Interactive Behavior); breastmilk composition (total fatty acids, proteins, and cortisol); and maternal metabolic profile (serum hormones and interleukins). Mothers of infants with lower visual fixation scores had higher levels of protein in breastmilk at 3 months. Mothers of infants with better visual conduct scores had higher serum levels of T4 (at 1 month) and prolactin (at 3 months). There were no associations between visual ability and motor development, home environment, or maternal care. Early newborn neuromotor development, especially visual and fine motor skills, is associated with maternal biological characteristics (metabolic factors and breastmilk composition), highlighting the importance of early detection of maternal metabolic changes for the healthy neurodevelopment of newborns.

2.
Behav Brain Res ; 472: 115147, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39029628

RESUMEN

Early life adversity has been linked with a higher probability of developing behavioral impairments and environmental manipulation is a strategy that may reduce the negative effects of exposure to adversity in early life. Here, we focused on exploring the influence of environmental enrichment (EE) as a protective factor in the context of early life adversity. We hypothesized that 24 hours of maternal deprivation (MD), in the second week of life, could induce anxiety-like behavior alterations and that exposure to EE could induce resilience to these behaviors due to alterations in the serotonergic system. Male Wistar rats were exposed to MD, on postnatal days 11 and 13, and to EE, after weaning. In adulthood, we performed a series of behavioral tests for fear, anxiety, and locomotor activity. We also measured the levels of serotonin in the amygdala and dorsal raphe nucleus. Our results revealed that MD does not impact fear behavior or the levels of serotonin, while EE decreases locomotor activity in a novel environment and enhances exploration in the predator odor test. EE also decreases serotonin in the amygdala and increases its turnover rate levels. Our findings provide insights into the critical timeframe during which stress exposure impacts the development and confirm that exposure to EE has an independent and protective effect for anxiety-like behaviors later in life.


Asunto(s)
Experiencias Adversas de la Infancia , Emociones , Ambiente , Experiencias Adversas de la Infancia/psicología , Ansiedad/psicología , Privación Materna , Masculino , Femenino , Animales , Ratas , Actividad Motora , Conducta Exploratoria , Memoria , Núcleo Dorsal del Rafe/metabolismo , Amígdala del Cerebelo/metabolismo , Serotonina/metabolismo , Miedo/psicología
3.
Mol Psychiatry ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844534

RESUMEN

Understanding the shared and divergent mechanisms across antidepressant (AD) classes and probiotics is critical for improving treatment for mood disorders. Here we examine the transcriptomic effects of bupropion (NDRI), desipramine (SNRI), fluoxetine (SSRI) and a probiotic formulation (Lacidofil®) on 10 regions across the mammalian brain. These treatments massively alter gene expression (on average, 2211 differentially expressed genes (DEGs) per region-treatment combination), highlighting the biological complexity of AD and probiotic action. Intersection of DEG sets against neuropsychiatric GWAS loci, sex-specific transcriptomic portraits of major depressive disorder (MDD), and mouse models of stress and depression reveals significant similarities and differences across treatments. Interestingly, molecular responses in the infralimbic cortex, basolateral amygdala and locus coeruleus are region-specific and highly similar across treatments, whilst responses in the Raphe, medial preoptic area, cingulate cortex, prelimbic cortex and ventral dentate gyrus are predominantly treatment-specific. Mechanistically, ADs concordantly downregulate immune pathways in the amygdala and ventral dentate gyrus. In contrast, protein synthesis, metabolism and synaptic signaling pathways are axes of variability among treatments. We use spatial transcriptomics to further delineate layer-specific molecular pathways and DEGs within the prefrontal cortex. Our study reveals complex AD and probiotics action on the mammalian brain and identifies treatment-specific cellular processes and gene targets associated with mood disorders.

4.
EBioMedicine ; 95: 104749, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37549631

RESUMEN

BACKGROUND: There are sex-specific differences in the prevalence, symptomology and course of psychiatric disorders. However, preclinical models have primarily used males, such that the molecular mechanisms underlying sex-specific differences in psychiatric disorders are not well established. METHODS: In this study, we compared transcriptome-wide gene expression profiles in male and female rats within the corticolimbic system, including the cingulate cortex, nucleus accumbens medial shell (NAcS), ventral dentate gyrus and the basolateral amygdala (n = 22-24 per group/region). FINDINGS: We found over 3000 differentially expressed genes (DEGs) in the NAcS between males and females. Of these DEGs in the NAcS, 303 showed sex-dependent conservation DEGs in humans and were significantly enriched for gene ontology terms related to blood vessel morphogenesis and regulation of cell migration. Single nuclei RNA sequencing in the NAcS of male and female rats identified widespread sex-dependent expression, with genes upregulated in females showing a notable enrichment for synaptic function. Female upregulated genes in astrocytes, Drd3+MSNs and oligodendrocyte were also enriched in several psychiatric genome-wide association studies (GWAS). INTERPRETATION: Our data provide comprehensive evidence of sex- and cell-specific molecular profiles in the NAcS. Importantly these differences associate with anxiety, bipolar disorder, schizophrenia, and cross-disorder, suggesting an intrinsic molecular basis for sex-based differences in psychiatric disorders that strongly implicates the NAcS. FUNDING: This work was supported by funding from the Hope for Depression Research Foundation (MJM).


Asunto(s)
Estudio de Asociación del Genoma Completo , Trastornos Mentales , Humanos , Masculino , Femenino , Ratas , Animales , Encéfalo/metabolismo , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Transcriptoma , Análisis de Secuencia de ARN
6.
Front Behav Neurosci ; 16: 954977, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311861

RESUMEN

Background: Secure attachment reflects caregiver-child relationship in which the caregiver is responsive when support and comforting are needed by the child. This pattern of bond has an important buffering role in the response to stress by the reduction of the negative experience and its associated physiological response. Disruption of the physiological stress system is thought to be a central mechanism by which early care impacts children. Early life stress causes cellular and molecular changes in brain regions associated with cognitive functions that are fundamental for early learning. Methods: The association between attachment, cortisol response before and after the Strange Situation Experiment, and neurodevelopment was examined in a sample of 107 preschoolers at age three. Also, the predictive effect of cortisol reactivity and attachment on telomere length at age seven was investigated in a followed-up sample of 77 children. Results: Children with insecure attachment had higher cortisol secretion and poorer neurodevelopmental skills at age three. A significant cortisol change was observed across the experiment with non-significant interaction with attachment. The attachment and neurodevelopment association was not mediated by cortisol secretion. Preschoolers' attachment and cortisol did not associate nor interacted to predict telomere length at age seven. Conclusion: These findings add evidence to the detrimental effects of insecure attachment as an aggravator of the physiological response to stress and poorer neurodevelopment during the preschool period. Although attachment and cortisol were not predictive of telomere length, intervention policies that promote secure attachment are more likely to positively echo on several health domains.

7.
Commun Biol ; 5(1): 1092, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36241774

RESUMEN

Leptin influences eating behavior. Exposure to early adversity is associated with eating behaviour disorders and metabolic syndrome, but the role of the leptin receptor on this relationship is poorly explored. We investigated whether individual differences in brain region specific leptin receptor (LepR) gene networks could moderate the effects of early adversity on eating behavior and metabolism. We created an expression-based polygenic risk score (ePRS) reflecting variations in the function of LepR gene network in prefrontal cortex and hypothalamus to investigate the interactions between a cumulative index of postnatal adversity on eating behavior in two independent birth cohorts (MAVAN and GUSTO). To explore whether variations in the prefrontal cortex or hypothalamic genetic scores could be associated with metabolic measurements, we also assessed the relationship between LepR-ePRS and fasting blood glucose and leptin levels in a third independent cohort (ALSPAC). We identified significant interaction effects between postnatal adversity and prefrontal-based LepR-ePRS on the Child Eating Behavior Questionnaire scores. In MAVAN, we observed a significant interaction effect on food enjoyment at 48 months (ß = 61.58, p = 0.015) and 72 months (ß = 97.78, p = 0.001); food responsiveness at 48 months (ß = 83.79, p = 0.009) satiety at 48 months (ß = -43.63, p = 0.047). Similar results were observed in the GUSTO cohort, with a significant interaction effect on food enjoyment (ß = 30.48, p = 0.006) food fussiness score (ß = -24.07, p = 0.02) and satiety score at 60 months (ß = -17.00, p = 0.037). No effects were found when focusing on the hypothalamus-based LepR-ePRS on eating behavior in MAVAN and GUSTO cohorts, and there was no effect of hypothalamus and prefrontal cortex based ePRSs on metabolic measures in ALSPAC. Our study indicated that exposure to postnatal adversity interacts with prefrontal cortex LepR-ePRS to moderate eating behavior, suggesting a neurobiological mechanism associated with the development of eating behavior problems in response to early adversity. The knowledge of these mechanisms may guide the understanding of eating patterns associated with risk for obesity in response to fluctuations in stress exposure early in life.


Asunto(s)
Experiencias Adversas de la Infancia , Leptina , Niño , Humanos , Glucemia , Conducta Alimentaria/fisiología , Redes Reguladoras de Genes , Leptina/genética , Leptina/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo
8.
Mol Psychiatry ; 27(11): 4510-4525, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36056172

RESUMEN

Depression and anxiety are major global health burdens. Although SSRIs targeting the serotonergic system are prescribed over 200 million times annually, they have variable therapeutic efficacy and side effects, and mechanisms of action remain incompletely understood. Here, we comprehensively characterise the molecular landscape of gene regulatory changes associated with fluoxetine, a widely-used SSRI. We performed multimodal analysis of SSRI response in 27 mammalian brain regions using 310 bulk RNA-seq and H3K27ac ChIP-seq datasets, followed by in-depth characterisation of two hippocampal regions using single-cell RNA-seq (20 datasets). Remarkably, fluoxetine induced profound region-specific shifts in gene expression and chromatin state, including in the nucleus accumbens shell, locus coeruleus and septal areas, as well as in more well-studied regions such as the raphe and hippocampal dentate gyrus. Expression changes were strongly enriched at GWAS loci for depression and antidepressant drug response, stressing the relevance to human phenotypes. We observed differential expression at dozens of signalling receptors and pathways, many of which are previously unknown. Single-cell analysis revealed stark differences in fluoxetine response between the dorsal and ventral hippocampal dentate gyri, particularly in oligodendrocytes, mossy cells and inhibitory neurons. Across diverse brain regions, integrative omics analysis consistently suggested increased energy metabolism via oxidative phosphorylation and mitochondrial changes, which we corroborated in vitro; this may thus constitute a shared mechanism of action of fluoxetine. Similarly, we observed pervasive chromatin remodelling signatures across the brain. Our study reveals unexpected regional and cell type-specific heterogeneity in SSRI action, highlights under-studied brain regions that may play a major role in antidepressant response, and provides a rich resource of candidate cell types, genes, gene regulatory elements and pathways for mechanistic analysis and identifying new therapeutic targets for depression and anxiety.


Asunto(s)
Ensamble y Desensamble de Cromatina , Fluoxetina , Humanos , Antidepresivos/farmacología , Encéfalo/metabolismo , Metabolismo Energético/genética , Fluoxetina/farmacología , Fluoxetina/metabolismo , Mamíferos , Multiómica , Animales
9.
Biol Psychiatry ; 92(12): 952-963, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35977861

RESUMEN

BACKGROUND: Selective serotonin reuptake inhibitors such as fluoxetine have a limited treatment efficacy. The mechanism by which some patients respond to fluoxetine while others do not remains poorly understood, limiting treatment effectiveness. We have found the opioid system to be involved in the responsiveness to fluoxetine treatment in a mouse model for anxiety- and depressive-like behavior. METHODS: We analyzed gene expression changes in the dentate gyrus of mice chronically treated with corticosterone and fluoxetine. After identifying a subset of genes of interest, we studied their expression patterns in relation to treatment responsiveness. We further characterized their expression through in situ hybridization and the analysis of a single-cell RNA sequencing dataset. Finally, we behaviorally tested mu and delta opioid receptor knockout mice in the novelty suppressed feeding test and the forced swim test after chronic corticosterone and fluoxetine treatment. RESULTS: Chronic fluoxetine treatment upregulates proenkephalin expression in the dentate gyrus, and this upregulation is associated with treatment responsiveness. The expression of several of the most significantly upregulated genes, including proenkephalin, is localized to an anatomically and transcriptionally specialized subgroup of mature granule cells in the dentate gyrus. We have also found that the delta opioid receptor contributes to some, but not all, of the behavioral effects of fluoxetine. CONCLUSIONS: These data indicate that the opioid system is involved in the antidepressant effects of fluoxetine, and this effect may be mediated through the upregulation of proenkephalin in a subpopulation of mature granule cells.


Asunto(s)
Analgésicos Opioides , Fluoxetina , Ratones , Animales , Fluoxetina/farmacología , Analgésicos Opioides/farmacología , Corticosterona , Receptores Opioides delta/genética , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Ratones Noqueados
10.
Front Neurosci ; 15: 744743, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899157

RESUMEN

Background: Previous studies focused on the relationship between prenatal conditions and neurodevelopmental outcomes later in life, but few have explored the interplay between gene co-expression networks and prenatal adversity conditions on cognitive development trajectories and gray matter density. Methods: We analyzed the moderation effects of an expression polygenic score (ePRS) for the Brain-derived Neurotrophic Factor gene network (BDNF ePRS) on the association between prenatal adversity and child cognitive development. A score based on genes co-expressed with the prefrontal cortex (PFC) BDNF was created, using the effect size of the association between the individual single nucleotide polymorphisms (SNP) and the BDNF expression in the PFC. Cognitive development trajectories of 157 young children from the Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN) cohort were assessed longitudinally in 4-time points (6, 12, 18, and 36 months) using the Bayley-II mental scales. Results: Linear mixed-effects modeling indicated that BDNF ePRS moderates the effects of prenatal adversity on cognitive growth. In children with high BDNF ePRS, higher prenatal adversity was associated with slower cognitive development in comparison with those exposed to lower prenatal adversity. Parallel-Independent Component Analysis (pICA) suggested that associations of expression-based SNPs and gray matter density significantly differed between low and high prenatal adversity groups. The brain IC included areas involved in visual association processes (Brodmann area 19 and 18), reallocation of attention, and integration of information across the supramodal cortex (Brodmann area 10). Conclusion: Cognitive development trajectories and brain gray matter seem to be influenced by the interplay of prenatal environmental conditions and the expression of an important BDNF gene network that guides the growth and plasticity of neurons and synapses.

11.
Neurobiol Learn Mem ; 185: 107509, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34454100

RESUMEN

During development, genetic and environmental factors interact to modify specific phenotypes. Both in humans and in animal models, early adversities influence cognitive flexibility, an important brain function related to behavioral adaptation to variations in the environment. Abnormalities in cognitive functions are related to changes in synaptic connectivity in the prefrontal cortex (PFC), and altered levels of synaptic proteins. We investigated if individual variations in the expression of a network of genes co-expressed with the synaptic protein VAMP1 in the prefrontal cortex moderate the effect of early environmental quality on the performance of children in cognitive flexibility tasks. Genes overexpressed in early childhood and co-expressed with the VAMP1 gene in the PFC were selected for study. SNPs from these genes (post-clumping) were compiled in an expression-based polygenic score (PFC-ePRS-VAMP1). We evaluated cognitive performance of the 4 years-old children in two cohorts using similar cognitive flexibility tasks. In the first cohort (MAVAN) we utilized two CANTAB tasks: (a) the Intra-/Extra-dimensional Set Shift (IED) task, and (b) the Spatial Working Memory (SWM) task. In the second cohort, GUSTO, we used the Dimensional Change Card Sort (DCCS) task. The results show that in 4 years-old children, the PFC-ePRS-VAMP1 network moderates responsiveness to the effects of early adversities on the performance in attentional flexibility tests. The same result was observed for a spatial working memory task. Compared to attentional flexibility, reversal learning showed opposite effects of the environment, as moderated by the ePRS. A parallel ICA analysis was performed to identify relationships between whole-brain voxel based gray matter density and SNPs that comprise the PFC-ePRS-VAMP1. The early environment predicts differences in gray matter content in regions such as prefrontal and temporal cortices, significantly associated with a genetic component related to Wnt signaling pathways. Our data suggest that a network of genes co-expressed with VAMP1 in the PFC moderates the influence of early environment on cognitive function in children.


Asunto(s)
Cognición/fisiología , Redes Reguladoras de Genes/fisiología , Corteza Prefrontal/metabolismo , Proteína 1 de Membrana Asociada a Vesículas/fisiología , Atención/fisiología , Niño , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Memoria a Corto Plazo/fisiología , Neuroimagen , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Aprendizaje Inverso/fisiología , Medio Social , Memoria Espacial/fisiología , Proteína 1 de Membrana Asociada a Vesículas/metabolismo
12.
Adv Food Nutr Res ; 97: 237-273, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34311901

RESUMEN

Environmental variations in early life influence brain development, making individuals more vulnerable to psychiatric and metabolic disorders. Early life stress (ELS) has a strong impact on the development of eating behavior. However, eating is a complex behavior, determined by an interaction between signals of energy homeostasis, neuronal circuits involved in its regulation, and circuits related to rewarding properties of the food. Although mechanisms underlying ELS-induced altered feeding behavior are not completely understood, evidence suggest that the effects of ELS on metabolic, mood, and emotional disorders, as well as reward system dysfunctions can contribute directly or indirectly to altered feeding behavior. The focus of this chapter is to discuss the effects of ELS on eating behavior and metabolism, considering different factors that control appetite such as energy homeostasis, hedonic properties of the food, emotional and cognitive status. After highlighting classic studies on the association between ELS and eating behavior alterations, we discuss how exposure to adversity can interact with genetics characteristics to predict variable outcomes.


Asunto(s)
Experiencias Adversas de la Infancia , Ingestión de Alimentos , Conducta Alimentaria , Alimentos , Homeostasis , Humanos , Recompensa
13.
Appetite ; 153: 104739, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32439602

RESUMEN

Environmental variations can influence eating and motivated behaviors, as well as the brain's feeding circuits to predisposing overweight and obesity. The identification of mechanisms through which a long-term consumption of caloric-dense palatable foods and its association with early life stress can cause neuroadaptations and possible modify motivational behaviors are relevant to elucidate the mechanisms associated with obesity. Here, we investigated the long-term effects of a chronic high-fat diet (HFD), and its interaction with early social isolation on hedonic feeding responses in adult rats. Rats were subjected, or not, to social isolation between postnatal days 21-28 and were fed a control diet or HFD, for 10 weeks post weaning. Hedonic feeding behavior was evaluated during adulthood and parameters related to the dopaminergic, cannabinoid, and opioid systems were measured in the nucleus accumbens. Animals with chronic HFD intake were less motivated to obtain sweet palatable foods. This reduced motivation did not appear to be associated with less pleasure upon tasting sweet food, as no alteration in reactivity to sweet taste was observed. Interestingly, the animals receiving HFD presented decreased immunocontents of the D1 and CB1 receptors, while the stressed group displayed a reduction in dopamine turnover. In summary, chronic HFD causes a significant motivational impairment for sweet palatable foods; these changes may be associated with a decreased dopaminergic and cannabinoid neurotransmission in the nucleus accumbens. In contrast, a brief social isolation during the prepubertal period was unable to alter the behavioral parameters studied but caused a decreased dopaminergic turnover in the nucleus accumbens of adult rats. These findings highlight the importance of long-term HFD exposure on the modulation of hedonic feeding behavior and related neurochemical systems.


Asunto(s)
Dieta Alta en Grasa , Conducta Alimentaria , Núcleo Accumbens , Animales , Dopamina , Ingestión de Alimentos , Masculino , Núcleo Accumbens/metabolismo , Obesidad/etiología , Ratas
14.
Int J Dev Neurosci ; 80(5): 354-368, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32299124

RESUMEN

We investigated the effect of a chronic palatable diet rich in simple sugars on memory of different degrees of emotionality in male adult rats, and on hippocampal plasticity markers in different stages of development. On postnatal day (PND) 21, 45 male Wistar rats were divided in two groups, according to their diet: (1-Control) receiving standard lab chow or (2-Palatable Diet) receiving both standard chow plus palatable diet ad libitum. At PND 60, behavioral tests were performed to investigate memory in distinct tasks. Hippocampal plasticity markers were investigated at PND 28 in half of the animals, and after the behavioral tests. Palatable diet consumption induced an impairment in memory, aversive or not, and increased Na+ , K+ -ATPase activity, both at PND 28, and in the adulthood. Synaptophysin, brain-derived neurotrophic factor (BDNF), and protein kinase B (AKT), and phosphorylated AKT were reduced in the hippocampus at PND 28. However, at PND 75, this diet consumption led to increased hippocampal levels of synaptophysin, spinophilin/neurabin-II, and decreased BDNF and neuronal nitric oxide synthase. These results showed a strongly association of simple sugars-rich diet consumption during the development with memory impairments. Plasticity markers are changed, with results that depend on the stage of development evaluated.

15.
Nutrition ; 75-76: 110770, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32276242

RESUMEN

OBJECTIVE: Exposure to artificial sweeteners, such as aspartame, during childhood and adolescence has been increasing in recent years. However, the safe use of aspartame has been questioned owing to its potentially harmful effects on the developing brain. The aim of this study was to test whether the chronic consumption of aspartame during adolescence leads to a depressive-like phenotype and to investigate the possible mechanisms underlying these behavioral changes. METHODS: Adolescent male and female rats were given unlimited access to either water, solutions of aspartame, or sucrose in their home cages from postnatal day 21 to 55. RESULTS: Forced swim test revealed that both chronic aspartame and sucrose intake induced depressive-like behaviord, which was more pronounced in males. Additionally, repeated aspartame intake was associated with increased cerebrospinal fluid (CSF) aspartate levels, decreased hippocampal neurogenesis, and reduced activation of the hippocampal leptin signaling pathways in males. In females, we observed a main effect of aspartame: reducing PI3K/AKT one of the brain-derived neurotrophic factor pathways; aspartame also increased CSF aspartate levels and decreased the immunocontent of the GluN2A subunit of the N-methyl-d-aspartic acid receptor. CONCLUSION: The findings revealed that repeated aspartame intake during adolescence is associated with a depressive-like phenotype and changes in brain plasticity. Interestingly, males appear to be more vulnerable to the adverse neurometabolic effects of aspartame than females, demonstrating a sexually dimorphic response. The present results highlighted the importance of understanding the effects caused by the constant use of this artificial sweetener in sensitive periods of development and contribute to regulation of its safe use.


Asunto(s)
Aspartame , Fosfatidilinositol 3-Quinasas , Edulcorantes , Animales , Aspartame/toxicidad , Femenino , Masculino , Fenotipo , Ratas , Sacarosa , Edulcorantes/toxicidad
16.
Front Neurosci ; 14: 198, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256307

RESUMEN

Variations in serotoninergic signaling have been related to behavioral outcomes. Alterations in the genome, such as DNA methylation and histone modifications, are affected by serotonin neurotransmission. The amygdala is an important brain region involved in emotional responses and impulsivity, which receives serotoninergic input. In addition, studies suggest that the serotonin transporter gene network may interact with the environment and influence the risk for psychiatric disorders. We propose to investigate whether/how interactions between the exposure to early life adversity and serotonin transporter gene network in the amygdala associate with behavioral disorders. We constructed a co-expression-based polygenic risk score (ePRS) reflecting variations in the function of the serotonin transporter gene network in the amygdala and investigated its interaction with postnatal adversity on attention problems in two independent cohorts from Canada and Singapore. We also described how interactions between ePRS-5-HTT and postnatal adversity exposure predict brain gray matter density and variation in DNA methylation across the genome. We observed that the expression-based polygenic risk score, reflecting the function of the amygdala 5-HTT gene network, interacts with postnatal adversity, to predict attention and hyperactivity problems across both cohorts. Also, both postnatal adversity score and amygdala ePRS-5-HTT score, as well as their interaction, were observed to be associated with variation in DNA methylation across the genome. Variations in gray matter density in brain regions linked to attentional processes were also correlated to our ePRS score. These results confirm that the amygdala 5-HTT gene network is strongly associated with ADHD-related behaviors, brain cortical density, and epigenetic changes in the context of adversity in young children.

17.
Neurochem Int ; 124: 114-122, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30639195

RESUMEN

OBJECTIVE: Some factors related to lifestyle, including stress and high-fat diet (HFD) consumption, are associated with higher prevalence of obesity. These factors can lead to an imbalance between ROS production and antioxidant defenses and to mitochondrial dysfunctions, which, in turn, could cause metabolic impairments, favoring the development of obesity. However, little is known about the interplay between these factors, particularly at early ages, and whether long-term sex-specific changes may occur. Here, we evaluated whether social isolation during the prepubertal period only, associated or not with chronic HFD, can exert long-term effects on oxidative status parameters and on mitochondrial function in the whole hypothalamus, in a sex-specific manner. METHODS: Wistar male and female rats were divided into two groups (receiving standard chow or standard chow + HFD), that were subdivided into exposed or not to social isolation during the prepubertal period. Oxidative status parameters, and mitochondrial function were evaluated in the hypothalamus in the adult age. RESULTS: Regarding antioxidant enzymes activities, HFD decreased GPx activity in the hypothalamus, while increasing SOD activity in females. Females also presented increased total thiols; however, non-protein thiols were lower. Main effects of stress and HFD were observed in TBARS levels in males, with both factors decreasing this parameter. Additionally, HFD increased complex IV activity, and decreased mitochondrial mass in females. Complex I-III activity was higher in males compared to females. CONCLUSION: Stress during the prepubertal period and chronic consumption of HFD had persistent sex-specific effects on oxidative status, as well as on its consequences for the cell and for mitochondrial function. HFD had more detrimental effects on females, inducing oxidative imbalance, which resulted in damage to the mitochondria. This HFD-induced imbalance may be related to the development of obesity.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hipotálamo/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Caracteres Sexuales , Estrés Psicológico/metabolismo , Animales , Femenino , Masculino , Potenciales de la Membrana/fisiología , Ratas , Ratas Wistar , Maduración Sexual/fisiología , Estrés Psicológico/psicología
18.
Physiol Behav ; 197: 29-36, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30266584

RESUMEN

Stress response can be modulated by neonatal/childhood events. Neonatal handling (NH) is an animal model in which the animals are subjected to brief separations from the dam during the first days of life, and it leads to lower emotionality and behavioral changes in adulthood. The aim of this study was to observe if early events, such as (NH), may program associative learning and behavioral flexibility in adult male rats and if these changes could be related to altered neurochemistry in the medial prefrontal cortex (mPFC). We evaluated proteins related to synaptic plasticity (brain-derived neurotrophic factor [BDNF] and synaptophysin [SYP]) as well as Na+/K+-ATPase activity. Additionally, we evaluated proteins related to the dopaminergic system (tyrosine hydroxylase [TH] and phosphorylated TH [pTH]), since this system appears to be affected in some neonatal interventions. Neonatally handled animals exhibited impairment in simple discrimination and intradimensional shift but not in reversal or compound discrimination; in addition, no alteration in switching from an egocentric spatial to a cued strategy was observed. These effects were accompanied by a decrease in SYP levels and Na+/K+-ATPase activity, suggesting reduced synaptic function. These results indicate that NH increases attention to irrelevant stimuli and/or impairs associative learning, and this is accompanied by neurochemical alterations in the (mPFC).


Asunto(s)
Manejo Psicológico , Discapacidades para el Aprendizaje/metabolismo , Plasticidad Neuronal/fisiología , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/metabolismo , Estrés Psicológico/metabolismo , Animales , Animales Recién Nacidos , Atención/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Función Ejecutiva/fisiología , Aprendizaje/fisiología , Discapacidades para el Aprendizaje/etiología , Masculino , Distribución Aleatoria , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Sinaptofisina/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
19.
Nutrition ; 50: 18-25, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29518602

RESUMEN

OBJECTIVE: Both stress exposure and high-fat diet (HFD) are contributors to the alarming prevalence of obesity. Leptin is secreted from adipose tissue and regulates appetite and body weight via the JAK-STAT3 pathway in the hypothalamus; it also regulates the hypothalamic-pituitary-thyroid axis, modulating energy homeostasis. Leptin signaling may be impaired by HFD intake, and here we investigate whether social isolation during the prepubertal period, associated with chronic HFD, can exert long-term effects on metabolic parameters in a sex-specific manner. METHODS: Wistar male and female rats were divided into two groups (receiving standard chow or standard chow and HFD), which were subdivided into (1) exposed to social isolation during the prepubertal period or (2) not exposed. RESULTS: HFD induced sex-specific effects on leptin signaling and on the hypothalamic-pituitary-thyroid axis; males receiving HFD presented increased T4 but a reduced T3:T4 ratio and higher caloric efficiency during development. A stress × diet interaction was noted for leptin signaling in males, where pSTAT3 was higher when these factors were applied together. On the other hand, females were more susceptible to early stress, which reduced pSTAT3 in the hypothalamus. CONCLUSION: Both stress during the prepubertal period and chronic consumption of HFD had long-term sex-specific effects on hormonal signaling related to energy balance. However, the effects of HFD were more pronounced in males, whereas prepubertal stress had greater effects on leptin signaling in females.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Leptina/metabolismo , Factores Sexuales , Aislamiento Social , Estrés Psicológico/metabolismo , Adolescente , Animales , Dieta Alta en Grasa/psicología , Metabolismo Energético , Femenino , Humanos , Hipotálamo/metabolismo , Masculino , Obesidad/etiología , Obesidad/psicología , Ratas , Ratas Wistar , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Estrés Psicológico/complicaciones
20.
Mol Neurobiol ; 55(4): 2740-2753, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28451885

RESUMEN

During development, the brain goes through fundamental processes, including organization of neural networks and plasticity. Environmental interventions may change initial brain programming, leading to long-lasting effects and altering the susceptibility to psychopathologies, including depression disorder. It is known that depression is a psychiatric disorder with a high prevalence worldwide, including high rates among adolescents. In this study, we evaluated whether social isolation in the prepubertal period and chronic use of high-fat diet (HFD) may induce depressive-like behavior in male adult rats. We also investigated hippocampal plasticity markers and neurotransmitter systems. We found both social isolation and HFD induced a depressive-like behavior in the forced swimming task. Moreover, chronic HFD reduced synaptic markers in hippocampus, demonstrated by reductions in ßIII-tubulin (neuronal marker), PSD-95, SNAP-25, and neurotrophin-3. The HFD group also presented decreased glutamatergic and GABAergic receptors subunits. On the other hand, stress affected hippocampal brain-derived neurotrophic factor (BDNF) signaling pathways, and increased expression of subunit of the NMDA receptor (NR2A). Both factors (stress and diet) decreased GR in the hippocampus without affecting plasma corticosterone at basal levels. Interactions between early stress and HFD access were observed only in the BNDF receptor (tropomyosin receptor kinase B; TrkB) and synaptophysin. In summary, these findings showed that a brief social isolation and chronic HFD, during a sensitive developmental period, cause depressive-like behavior in adulthood. The mechanisms underlying these behavioral effects may involve changes in the levels of synaptic proteins in hippocampus: HFD consumption appears to affect synaptic markers, while social isolation affected BDNF signaling more significantly.


Asunto(s)
Conducta Animal , Depresión/etiología , Depresión/fisiopatología , Hipocampo/fisiopatología , Plasticidad Neuronal , Estrés Psicológico/complicaciones , Animales , Biomarcadores/metabolismo , Depresión/psicología , Dieta Alta en Grasa , Ácido Glutámico/metabolismo , Hipocampo/patología , Masculino , Modelos Biológicos , Ratas Wistar , Receptores de Glucocorticoides/metabolismo , Maduración Sexual , Aislamiento Social/psicología , Sacarosa , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA