Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Cell Rep ; 30(4): 1246-1259.e6, 2020 01 28.
Article En | MEDLINE | ID: mdl-31995762

Age-related macular degeneration (AMD) is a leading cause of vision loss. To better understand disease pathogenesis and identify causal genes in GWAS loci for AMD risk, we present a comprehensive database of human retina and retinal pigment epithelium (RPE). Our database comprises macular and non-macular RNA sequencing (RNA-seq) profiles from 129 donors, a genome-wide expression quantitative trait loci (eQTL) dataset that includes macula-specific retina and RPE/choroid, and single-nucleus RNA-seq (NucSeq) from human retina and RPE with subtype resolution from more than 100,000 cells. Using NucSeq, we find enriched expression of AMD candidate genes in RPE cells. We identify 15 putative causal genes for AMD on the basis of co-localization of genetic association signals for AMD risk and eye eQTL, including the genes TSPAN10 and TRPM1. These results demonstrate the value of our human eye database for elucidating genetic pathways and potential therapeutic targets for ocular diseases.


Disease Susceptibility/metabolism , Gene Expression Regulation/genetics , Macular Degeneration/metabolism , Retinal Pigment Epithelium/metabolism , Aged , Aged, 80 and over , Alleles , Choroid/metabolism , Databases, Genetic , Female , Genome-Wide Association Study , Humans , Macular Degeneration/genetics , Male , Middle Aged , Polymorphism, Single Nucleotide , Quantitative Trait Loci , RNA-Seq , Risk Factors , Single-Cell Analysis , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Tetraspanins/genetics , Tetraspanins/metabolism , Transcriptome/genetics
3.
Sci Rep ; 8(1): 7348, 2018 05 09.
Article En | MEDLINE | ID: mdl-29743491

Geographic atrophy (GA), the advanced form of dry age-related macular degeneration (AMD), is characterized by progressive loss of retinal pigment epithelium cells and photoreceptors in the setting of characteristic extracellular deposits and remains a serious unmet medical need. While genetic predisposition to AMD is dominated by polymorphisms in complement genes, it remains unclear how complement activation contributes to retinal atrophy. Here we demonstrate that complement is activated on photoreceptor outer segments (POS) in the retina peripheral to atrophic lesions associated with GA. When exposed to human serum following outer blood-retinal barrier breakdown, POS act as potent activators of the classical and alternative complement pathway. In mouse models of retinal degeneration, classical and alternative pathway complement activation on photoreceptors contributed to the loss of photoreceptor function. This was dependent on C5a-mediated recruitment of peripheral blood monocytes but independent of resident microglia. Genetic or pharmacologic inhibition of both classical and alternative complement C3 and C5 convertases was required to reduce progressive degeneration of photoreceptor rods and cones. Our study implicates systemic classical and alternative complement proteins and peripheral blood monocytes as critical effectors of localized retinal degeneration with potential relevance for the contribution of complement activation to GA.


Complement Activation/genetics , Geographic Atrophy/physiopathology , Retinal Rod Photoreceptor Cells/metabolism , Animals , Atrophy/pathology , Complement Activation/physiology , Complement C3/genetics , Complement C3/physiology , Complement C4/genetics , Complement C4/physiology , Geographic Atrophy/genetics , Humans , Macular Degeneration/physiopathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Photoreceptor Cells/metabolism , Retina/metabolism , Retinal Degeneration/pathology , Retinal Pigment Epithelium/metabolism
4.
J Exp Med ; 213(2): 189-207, 2016 Feb 08.
Article En | MEDLINE | ID: mdl-26755704

Age-related macular degeneration (AMD), a leading cause of vision impairment in the ageing population, is characterized by irreversible loss of retinal pigment epithelial (RPE) cells and photoreceptors and can be associated with choroidal neovascularization. Mononuclear phagocytes are often present in AMD lesions, but the processes that direct myeloid cell recruitment remain unclear. Here, we identify IL-33 as a key regulator of inflammation and photoreceptor degeneration after retina stress or injury. IL-33(+) Müller cells were more abundant and IL-33 cytokine was elevated in advanced AMD cases compared with age-matched controls with no AMD. In rodents, retina stress resulted in release of bioactive IL-33 that in turn increased inflammatory chemokine and cytokine expression in activated Müller cells. Deletion of ST2, the IL-33 receptor α chain, or treatment with a soluble IL-33 decoy receptor significantly reduced release of inflammatory mediators from Müller cells, inhibited accumulation of mononuclear phagocytes in the outer retina, and protected photoreceptor rods and cones after a retina insult. This study demonstrates a central role for IL-33 in regulating mononuclear phagocyte recruitment to the photoreceptor layer and positions IL-33 signaling as a potential therapeutic target in macular degenerative diseases.


Immunity, Innate , Interleukin-33/metabolism , Macular Degeneration/immunology , Aged , Aged, 80 and over , Animals , Case-Control Studies , Cell Nucleus/immunology , Cytokines/metabolism , Ependymoglial Cells/immunology , Ependymoglial Cells/pathology , Female , Humans , In Vitro Techniques , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33/chemistry , Interleukin-33/deficiency , Interleukin-33/genetics , Macula Lutea/immunology , Macula Lutea/pathology , Macular Degeneration/genetics , Macular Degeneration/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Protein Processing, Post-Translational , Rats , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Interleukin/deficiency , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Retinal Pigment Epithelium/immunology , Retinal Pigment Epithelium/pathology
...