Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
JCI Insight ; 9(5)2024 Feb 06.
Article En | MEDLINE | ID: mdl-38319716

Pattern recognition receptor responses are profoundly attenuated before the third trimester of gestation in the relatively low-oxygen human fetal environment. However, the mechanisms regulating these responses are uncharacterized. Herein, genome-wide transcription and functional metabolic experiments in primary neonatal monocytes linked the negative mTOR regulator DDIT4L to metabolic stress, cellular bioenergetics, and innate immune activity. Using genetically engineered monocytic U937 cells, we confirmed that DDIT4L overexpression altered mitochondrial dynamics, suppressing their activity, and blunted LPS-induced cytokine responses. We also showed that monocyte mitochondrial function is more restrictive in earlier gestation, resembling the phenotype of DDIT4L-overexpressing U937 cells. Gene expression analyses in neonatal granulocytes and lung macrophages in preterm infants confirmed upregulation of the DDIT4L gene in the early postnatal period and also suggested a potential protective role against inflammation-associated chronic neonatal lung disease. Taken together, these data show that DDIT4L regulates mitochondrial activity and provide what we believe to be the first direct evidence for its potential role supressing innate immune activity in myeloid cells during development.


Cytokines , Infant, Premature , Infant, Newborn , Humans , Cytokines/metabolism , Monocytes/metabolism , Immunity, Innate , Mitochondria/metabolism
3.
Biochem Pharmacol ; 205: 115261, 2022 11.
Article En | MEDLINE | ID: mdl-36152677

The endocannabinoids 2-arachidonoyl-glycerol (2-AG) and N-arachidonoyl-ethanolamine (AEA) are eicosanoids implicated in numerous physiological processes like appetite, adipogenesis, inflammatory pain and inflammation. They mediate most of their physiological effects by activating the cannabinoid (CB) receptors 1 and 2. Other than directly binding to the CB receptors, 2-AG and AEA are also metabolized by most eicosanoid biosynthetic enzymes, yielding many metabolites that are part of the oxyendocannabinoidome. Some of these metabolites have been found in vivo, have the ability to modulate specific receptors and thus potentially influence physiological processes. In this review, we discuss the biosynthesis and metabolism of 2-AG and AEA, as well as their congeners from the monoacyl-glycerol and N-acyl-ethanolamine families, with a special focus on the metabolism by oxygenases involved in arachidonic acid metabolism. We highlight the knowledge gaps in our understanding of the regulation and roles the oxyendocannabinoidome mediators.


Cannabinoids , Endocannabinoids , Humans , Endocannabinoids/metabolism , Glycerides/metabolism , Monoglycerides , Arachidonic Acid , Glycerol , Polyunsaturated Alkamides/metabolism , Ethanolamines , Oxygenases
4.
Front Immunol ; 13: 893792, 2022.
Article En | MEDLINE | ID: mdl-35812400

Coronavirus disease 19 (COVID-19) is the clinical manifestation of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection. A hallmark of COVID-19 is a lung inflammation characterized by an abundant leukocyte infiltrate, elevated levels of cytokines/chemokines, lipid mediators of inflammation (LMI) and microthrombotic events. Animal models are useful for understanding the pathophysiological events leading to COVID-19. One such animal model is the K18-ACE2 transgenic mice. Despite their importance in inflammation, the study of LMI in lung of SARS-CoV-2 infected K18-ACE2 mice has yet to be studied to our knowledge. Using tandem mass spectrometry, the lung lipidome at different time points of infection was analyzed. Significantly increased LMI included N-oleoyl-serine, N-linoleoyl-glycine, N-oleoyl-alanine, 1/2-linoleoyl-glycerol, 1/2-docosahexaenoyl-glycerol and 12-hydroxy-eicosapenatenoic acid. The levels of prostaglandin (PG) E1, PGF2α, stearoyl-ethanolamide and linoleoyl-ethanolamide were found to be significantly reduced relative to mock-infected mice. Other LMI were present at similar levels (or undetected) in both uninfected and infected mouse lungs. In parallel to LMI measures, transcriptomic and cytokine/chemokine profiling were performed. Viral replication was robust with maximal lung viral loads detected on days 2-3 post-infection. Lung histology revealed leukocyte infiltration starting on day 3 post-infection, which correlated with the presence of high concentrations of several chemokines/cytokines. At early times post-infection, the plasma of infected mice contained highly elevated concentration of D-dimers suggestive of blood clot formation/dissolution. In support, the presence of blood clots in the lung vasculature was observed during infection. RNA-Seq analysis of lung tissues indicate that SARS-CoV-2 infection results in the progressive modulation of several hundred genes, including several inflammatory mediators and genes related to the interferons. Analysis of the lung lipidome indicated modest, yet significant modulation of a minority of lipids. In summary, our study suggests that SARS-CoV-2 infection in humans and mice share common features, such as elevated levels of chemokines in lungs, leukocyte infiltration and increased levels of circulating D-dimers. However, the K18-ACE2 mouse model highlight major differences in terms of LMI being produced in response to SARS-CoV-2 infection. The potential reasons and impact of these differences on the pathology and therapeutic strategies to be employed to treat severe COVID-19 are discussed.


COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Chemokines , Cytokines , Disease Models, Animal , Inflammation/pathology , Inflammation Mediators , Lipids , Lung/pathology , Mice , Mice, Transgenic
5.
Cells ; 11(1)2022 01 02.
Article En | MEDLINE | ID: mdl-35011703

High eosinophil (EOS) counts are a key feature of eosinophilic asthma. EOS notably affect asthmatic response by generating several lipid mediators. Mice have been utilized in hopes of defining new pharmacological targets to treat asthma. However, many pinpointed targets in mice did not translate into clinics, underscoring that key differences exist between the two species. In this study, we compared the ability of human (h) and mouse (m) EOS to biosynthesize key bioactive lipids derived from arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). hEOS were isolated from the blood of healthy subjects and mild asthmatics, while mEOSs were differentiated from the bone marrow. EOSs were treated with fatty acids and lipid mediator biosynthesis assessed by LC-MS/MS. We found that hEOS biosynthesized leukotriene (LT) C4 and LTB4 in a 5:1 ratio while mEOS almost exclusively biosynthesized LTB4. The biosynthesis of the 15-lipoxygenase (LO) metabolites 15-HETE and 12-HETE also differed, with a 15-HETE:12-HETE ratio of 6.3 for hEOS and 0.727 for mEOS. EOS biosynthesized some specialized pro-resolving mediators, and the levels from mEOS were 9-times higher than those of hEOS. In contrast, hEOS produced important amounts of the endocannabinoid 2-arachidonoyl-glycerol (2-AG) and its congeners from EPA and DHA, a biosynthetic pathway that was up to ~100-fold less prominent in mEOS. Our data show that hEOS and mEOS biosynthesize the same lipid mediators but in different amounts. Compared to asthmatics, mouse models likely have an amplified involvement of LTB4 and specialized pro-resolving mediators and a diminished impact of the endocannabinoid 2-arachidonoyl-glycerol and its congeners.


Arachidonic Acids/metabolism , Chromatography, Liquid/methods , Docosahexaenoic Acids/metabolism , Eicosanoids/metabolism , Endocannabinoids/metabolism , Eosinophils/metabolism , Glycerides/metabolism , Tandem Mass Spectrometry/methods , Animals , Humans , Mice
6.
Cells ; 10(9)2021 09 05.
Article En | MEDLINE | ID: mdl-34571971

The endocannabinoids 2-arachidonoyl-glycerol and N-arachidonoyl-ethanolamine are lipids regulating many physiological processes, notably inflammation. Endocannabinoid hydrolysis inhibitors are now being investigated as potential anti-inflammatory agents. In addition to 2-arachidonoyl-glycerol and N-arachidonoyl-ethanolamine, the endocannabinoidome also includes other monoacylglycerols and N-acyl-ethanolamines such as 1-linoleoyl-glycerol (1-LG) and N-linoleoyl-ethanolamine (LEA). By increasing monoacylglycerols and/or N-acyl-ethanolamine levels, endocannabinoid hydrolysis inhibitors will likely increase the levels of their metabolites. Herein, we investigated whether 1-LG and LEA were substrates for the 15-lipoxygenase pathway, given that both possess a 1Z,4Z-pentadiene motif, near their omega end. We thus assessed how human eosinophils and neutrophils biosynthesized the 15-lipoxygenase metabolites of 1-LG and LEA. Linoleic acid (LA), a well-documented substrate of 15-lipoxygenases, was used as positive control. N-13-hydroxy-octodecadienoyl-ethanolamine (13-HODE-EA) and 13-hydroxy-octodecadienoyl-glycerol (13-HODE-G), the 15-lipoxygenase metabolites of LEA and 1-LG, were synthesized using Novozym 435 and soybean lipoxygenase. Eosinophils, which express the 15-lipoxygenase-1, metabolized LA, 1-LG, and LEA into their 13-hydroxy derivatives. This was almost complete after five minutes. Substrate preference of eosinophils was LA > LEA > 1-LG in presence of 13-HODE-G hydrolysis inhibition with methyl-arachidonoyl-fluorophosphonate. Human neutrophils also metabolized LA, 1-LG, and LEA into their 13-hydroxy derivatives. This was maximal after 15-30 s. Substrate preference was LA ≫ 1-LG > LEA. Importantly, 13-HODE-G was found in humans and mouse tissue samples. In conclusion, our data show that human eosinophils and neutrophils metabolize 1-LG and LEA into the novel endogenous 15-lipoxygenase metabolites 13-HODE-G and 13-HODE-EA. The full biological importance of 13-HODE-G and 13-HODE-EA remains to be explored.


Arachidonate 15-Lipoxygenase/metabolism , Eosinophils/enzymology , Linoleic Acids/metabolism , Neutrophils/enzymology , Animals , Humans , Kinetics , Mice , Molecular Docking Simulation , Peroxisome Proliferator-Activated Receptors/metabolism , Protein Binding , Receptors, Cannabinoid/metabolism , Substrate Specificity , TRPV Cation Channels/metabolism
7.
J Allergy Clin Immunol ; 148(2): 368-380.e3, 2021 08.
Article En | MEDLINE | ID: mdl-34111453

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to a variety of clinical outcomes, ranging from the absence of symptoms to severe acute respiratory disease and ultimately death. A feature of patients with severe coronavirus disease 2019 (COVID-19) is the abundance of inflammatory cytokines in the blood. Elevated levels of cytokines are predictive of infection severity and clinical outcome. In contrast, studies aimed at defining the driving forces behind the inflammation in lungs of subjects with severe COVID-19 remain scarce. OBJECTIVE: Our aim was to analyze and compare the plasma and bronchoalveolar lavage (BAL) fluids of patients with severe COVID-19 (n = 45) for the presence of cytokines and lipid mediators of inflammation (LMIs). METHODS: Cytokines were measured by using Luminex multiplex assay, and LMIs were measured by using liquid chromatography-tandem mass spectrometry. RESULTS: We revealed high concentrations of numerous cytokines, chemokines, and LMIs in the BAL fluid of patients with severe COVID-19. Of the 13 most abundant mediators in BAL fluid, 11 were chemokines, with CXCL1 and CXCL8 being 200 times more abundant than IL-6 and TNF-α. Eicosanoid levels were also elevated in the lungs of subjects with severe COVID-19. Consistent with the presence chemotactic molecules, BAL fluid samples were enriched for neutrophils, lymphocytes, and eosinophils. Inflammatory cytokines and LMIs in plasma showed limited correlations with those present in BAL fluid, arguing that circulating inflammatory molecules may not be a reliable proxy of the inflammation occurring in the lungs of patients with severe COVID-19. CONCLUSIONS: Our findings indicate that hyperinflammation of the lungs of patients with severe COVID-19 is fueled by excessive production of chemokines and eicosanoids. Therapeutic strategies to dampen inflammation in patients with COVID-19 should be tailored accordingly.


COVID-19/immunology , Cytokines/immunology , Eicosanoids/immunology , Inflammation/immunology , Lung/immunology , SARS-CoV-2 , Adult , Aged , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , COVID-19/blood , Cytokines/blood , Female , Humans , Inflammation/blood , Lung/cytology , Lymphocytes/immunology , Male , Middle Aged , Neutrophils/immunology , Severity of Illness Index
8.
FASEB J ; 35(6): e21666, 2021 06.
Article En | MEDLINE | ID: mdl-34033145

Severe acute respiratory syndrome coronavirus 2 is responsible for coronavirus disease 2019 (COVID-19). While COVID-19 is often benign, a subset of patients develops severe multilobar pneumonia that can progress to an acute respiratory distress syndrome. There is no cure for severe COVID-19 and few treatments significantly improved clinical outcome. Dexamethasone and possibly aspirin, which directly/indirectly target the biosynthesis/effects of numerous lipid mediators are among those options. Our objective was to define if severe COVID-19 patients were characterized by increased bioactive lipids modulating lung inflammation. A targeted lipidomic analysis of bronchoalveolar lavages (BALs) by tandem mass spectrometry was done on 25 healthy controls and 33 COVID-19 patients requiring mechanical ventilation. BALs from severe COVID-19 patients were characterized by increased fatty acids and inflammatory lipid mediators. There was a predominance of thromboxane and prostaglandins. Leukotrienes were also increased, notably LTB4 , LTE4 , and eoxin E4 . Monohydroxylated 15-lipoxygenase metabolites derived from linoleate, arachidonate, eicosapentaenoate, and docosahexaenoate were also increased. Finally yet importantly, specialized pro-resolving mediators, notably lipoxin A4 and the D-series resolvins, were also increased, underscoring that the lipid mediator storm occurring in severe COVID-19 involves pro- and anti-inflammatory lipids. Our data unmask the lipid mediator storm occurring in the lungs of patients afflicted with severe COVID-19. We discuss which clinically available drugs could be helpful at modulating the lipidome we observed in the hope of minimizing the deleterious effects of pro-inflammatory lipids and enhancing the effects of anti-inflammatory and/or pro-resolving lipid mediators.


COVID-19 , Leukotriene B4/metabolism , Leukotriene E4/analogs & derivatives , Leukotriene E4/metabolism , Lipoxins/metabolism , Lung , SARS-CoV-2/metabolism , Adult , COVID-19/metabolism , COVID-19/pathology , COVID-19/therapy , Female , Humans , Lung/metabolism , Lung/pathology , Lung/virology , Male , Middle Aged
9.
Article En | MEDLINE | ID: mdl-33915294

N-Arachidonoyl-ethanolamine (AEA) is an endocannabinoid (eCB) and endogenous lipid mimicking many of the effects of Δ9-tetrahydrocannabinol, notably on brain functions, appetite, pain and inflammation. The eCBs and eCB-like compounds contain fatty acids, the main classes being the monoacylglycerols and the N-acyl-ethanolamines (NAEs). Thus, each long chain fatty acid likely exists under the form of a monoacylglycerol and NAE, as it is the case for arachidonic acid (AA) and linoleic acid (LA). Following their biosynthesis, AA and AEA can be further metabolized into additional eicosanoids, notably by the 15-lipoxygenase pathway. Thus, we postulated that NAEs possessing a 1Z,4Z-pentadiene motif, near their omega end, would be transformed into their 15-lipoxygenase metabolites. As a proof of concept, we investigated N-linoleoyl-ethanolamine (LAE). We successfully synthesized LEA and LEA-d4 as well as their 15-lipoxygenase-derived derivatives, namely 13-hydroxy-9Z,11E-octadecadienoyl-N-ethanolamine (13-HODE-EA) and 13-HODE-EA-d4, using Novozyme 435 immobilized on acrylic resin and soybean lipoxygenase respectively. We also show that both human 15-lipoxygenase-1 and -2 can biosynthesize 13-HODE-EA. Co-incubation of LEA and LA with either human 15-lipoxygenase led to the biosynthesis of 13-HODE-EA and 13-HODE in a ratio equal to or greater than 3:1, indicating that LEA is preferred to LA by these enzymes. Finally, we show that 13-HODE-EA is found in human saliva and skin and is a weak although selective TRPV1 agonist. The full biological importance of 13-HODE-EA remains to be explored.


Arachidonate 15-Lipoxygenase/metabolism , Ethanolamine/metabolism , Linoleic Acids/chemical synthesis , Saliva/metabolism , Skin/metabolism , Chemistry Techniques, Synthetic , Humans , Linoleic Acids/metabolism , Linoleic Acids/pharmacology , Molecular Targeted Therapy
10.
FASEB J ; 34(3): 4253-4265, 2020 03.
Article En | MEDLINE | ID: mdl-32012340

The endocannabinoid (eCB) 2-arachidonoyl-gycerol (2-AG) modulates immune responses by activating cannabinoid receptors or through its multiple metabolites, notably eicosanoids. Thus, 2-AG hydrolysis inhibition might represent an interesting anti-inflammatory strategy that would simultaneously increase the levels of 2-AG and decrease those of eicosanoids. Accordingly, 2-AG hydrolysis inhibition increased 2-AG half-life in neutrophils. Under such setting, neutrophils, eosinophils, and monocytes synthesized large amounts of 2-AG and other monoacylglycerols (MAGs) in response to arachidonic acid (AA) and other unsaturated fatty acids (UFAs). Arachidonic acid and UFAs were ~1000-fold more potent than G protein-coupled receptor (GPCR) agonists. Triascin C and thimerosal, which, respectively, inhibit fatty acyl-CoA synthases and acyl-CoA transferases, prevented the UFA-induced MAG biosynthesis, implying glycerolipid remodeling. 2-AG and other MAG biosynthesis was preceded by that of the corresponding lysophosphatidic acid (LPA). However, we could not directly implicate LPA dephosphorylation in MAG biosynthesis. While GPCR agonists poorly induced 2-AG biosynthesis, they inhibited that induced by AA by 25%-50%, suggesting that 2-AG biosynthesis is decreased when leukocytes are surrounded by a pro-inflammatory entourage. Our data strongly indicate that human leukocytes use AA and UFAs to biosynthesize biologically significant concentrations of 2-AG and other MAGs and that hijacking the immune system with 2-AG hydrolysis inhibitors might diminish inflammation in humans.


Arachidonic Acid/pharmacology , Arachidonic Acids/metabolism , Endocannabinoids/metabolism , Fatty Acids, Unsaturated/metabolism , Glycerides/metabolism , Humans , Hydrolysis , Immunoblotting , Leukocytes , Lysophospholipids/metabolism , Monoglycerides/metabolism , Receptors, G-Protein-Coupled/metabolism
11.
J Leukoc Biol ; 106(6): 1337-1347, 2019 12.
Article En | MEDLINE | ID: mdl-31556464

2-Arachidonoyl-glycerol (2-AG) is an endocannabinoid with anti-inflammatory properties. Blocking 2-AG hydrolysis to enhance CB2 signaling has proven effective in mouse models of inflammation. However, the expression of 2-AG lipases has never been thoroughly investigated in human leukocytes. Herein, we investigated the expression of seven 2-AG hydrolases by human blood leukocytes and alveolar macrophages (AMs) and found the following protein expression pattern: monoacylglycerol (MAG lipase; eosinophils, AMs, monocytes), carboxylesterase (CES1; monocytes, AMs), palmitoyl-protein thioesterase (PPT1; AMs), α/ß-hydrolase domain (ABHD6; mainly AMs), ABHD12 (all), ABHD16A (all), and LYPLA2 (lysophospholipase 2; monocytes, lymphocytes, AMs). We next found that all leukocytes could hydrolyze 2-AG and its metabolites derived from cyclooxygenase-2 (prostaglandin E2 -glycerol [PGE2 -G]) and the 15-lipoxygenase (15-hydroxy-eicosatetraenoyl-glycerol [15-HETE-G]). Neutrophils and eosinophils were consistently better at hydrolyzing 2-AG and its metabolites than monocytes and lymphocytes. Moreover, the efficacy of leukocytes to hydrolyze 2-AG and its metabolites was 2-AG  ≥ 15-HETE-G >> PGE2 -G for each leukocyte. Using the inhibitors methylarachidonoyl-fluorophosphonate (MAFP), 4-nitrophenyl-4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184), Palmostatin B, 4'-carbamoylbiphenyl-4-yl methyl(3-(pyridin-4-yl)benzyl)carbamate, N-methyl-N-[[3-(4-pyridinyl)phenyl]methyl]-4'-(aminocarbonyl)[1,1'-biphenyl]-4-yl ester carbamic acid (WWL70), 4'-[[[methyl[[3-(4-pyridinyl)phenyl]methyl]amino]carbonyl]oxy]-[1,1'-biphenyl]-4-carboxylic acid, ethyl ester (WWL113), tetrahydrolipstatin, and ML349, we could not pinpoint a specific hydrolase responsible for the hydrolysis of 2-AG, PGE2 -G, and 15-HETE-G by these leukocytes. Furthermore, JZL184, a selective MAG lipase inhibitor, blocked the hydrolysis of 2-AG, PGE2 -G, and 15-HETE-G by neutrophils and the hydrolysis of PGE2 -G and 15-HETE-G by lymphocytes, two cell types with limited/no MAG lipase. Using an activity-based protein profiling (ABPP) probe to label hydrolases in leukocytes, we found that they express many MAFP-sensitive hydrolases and an unknown JZL184-sensitive hydrolase of ∼52 kDa. Altogether, our results indicate that human leukocytes are experts at hydrolyzing 2-AG and its metabolites via multiple lipases and probably via a yet-to-be characterized 52 kDa hydrolase. Blocking 2-AG hydrolysis in humans will likely abrogate the ability of human leukocytes to degrade 2-AG and its metabolites and increase their anti-inflammatory effects in vivo.


Arachidonate 15-Lipoxygenase/metabolism , Arachidonic Acids/metabolism , Endocannabinoids/metabolism , Gene Expression Regulation , Glycerides/metabolism , Leukocytes/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Signal Transduction , Biomarkers , Enzyme Inhibitors/pharmacology , Humans , Hydrolysis/drug effects , Leukocytes/drug effects
12.
J Leukoc Biol ; 105(6): 1131-1142, 2019 06.
Article En | MEDLINE | ID: mdl-30676680

Leukotriene B4 (LTB4 ) plays a prominent role in innate immunity as it induces phagocyte recruitment, the release of antimicrobial effectors, and as it potentiates the ingestion and killing of pathogens. In humans, LTB4 has a short half-life and is rapidly metabolized by leukocytes, notably into 20-OH- and 20-COOH-LTB4 by neutrophils. Although these LTB4 metabolites bind to the BLT1 receptor with high affinity, they activate neutrophils to a much lower extent than LTB4 . We thus postulated that LTB4 metabolites could dampen BLT1 -mediated responses, therefore limiting the impact of LTB4 on human neutrophil functions. We found that 20-OH-LTB4 and 20-COOH-LTB4 inhibited all of the LTB4 -mediated neutrophil responses we tested (migration, degranulation, leukotriene biosynthesis). The potencies of the different compounds at inhibiting LTB4 -mediated responses were 20-OH-LTB4  = CP 105,696 (BLT1 antagonist) > > 20-COOH-LTB4 ≥ resolvin E1 (RVE1 ). In contrast, the fMLP- and IL-8-mediated responses we tested were not affected by the LTB4 metabolites or RVE1 . 20-OH-LTB4 and 20-COOH-LTB4 also inhibited the LTB4 -mediated migration of human eosinophils but not that induced by 5-KETE. Moreover, using 20-COOH-LTB4 , LTB4 , and LTB4 -alkyne, we show that LTB4 is a chemotactic, rather than a chemokinetic factor for both human neutrophils and eosinophils. In conclusion, our data indicate that LTB4 metabolites and RVE1 act as natural inhibitors of LTB4 -mediated responses. Thus, preventing LTB4 ω-oxidation might result in increased innate immunity and granulocyte functions.


Eosinophils/immunology , Leukotriene B4/immunology , Neutrophils/immunology , Receptors, Leukotriene B4/immunology , Arachidonic Acids/pharmacology , Benzopyrans/pharmacology , Carboxylic Acids/pharmacology , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/pharmacology , Eosinophils/cytology , Humans , Leukotriene B4/pharmacology , Neutrophils/cytology , Receptors, Leukotriene B4/antagonists & inhibitors
13.
PLoS One ; 13(8): e0202424, 2018.
Article En | MEDLINE | ID: mdl-30118527

Neutrophils and eosinophils are important sources of bioactive lipids from the 5- and the 15-lipoxygenase (LO) pathways. Herein, we compared the effectiveness of humans eosinophils and eosinophil-depleted neutrophils to synthesize 15-LO metabolites using a cocktail of different 15-LO substrates as well as their sensitivities to eight documented 15-lipoxygenase inhibitors. The treatment of neutrophils and eosinophils with linoleic acid, dihomo-γ-linolenic acid, arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid and arachidonyl-ethanolamide, led to the synthesis of 13-HODE, 15-HETrE, 15-HETE, 15-HEPE, 14-HDHA/17-HDHA, and 15-hydroxy-AEA. Neutrophils and eosinophils also metabolized the endocannabinoid 2-arachidonoyl-glycerol into 15-HETE-glycerol, although this required 2-arachidonoyl-glycerol hydrolysis inhibition. Neutrophils and eosinophils differed in regard to dihomo-γ-linolenic acid and linoleic acid utilization with 15-HETrE/13-HODE ratios of 0.014 ± 0.0008 and 0.474 ± 0.114 for neutrophils and eosinophils respectively. 15-LO metabolite synthesis by neutrophils and eosinophils also differed in regard to their relative production of 17-HDHA and 14-HDHA.The synthesis of 15-LO metabolites by neutrophils was concentration-dependent and rapid, reaching a plateau after one minute. While investigating the biosynthetic routes involved, we found that eosinophil-depleted neutrophils express the 15-lipoxygenase-2 but not the 15-LO-1, in contrast to eosinophils which express the 15-LO-1 but not the 15-LO-2. Moreover, 15-LO metabolite synthesis by neutrophils was not inhibited by the 15-LO-1 inhibitors BLX769, BLX3887, and ML351. However, 15-LO product synthesis was partially inhibited by 100 µM NDGA. Altogether, our data indicate that the best 15-LO-1 inhibitors in eosinophils are BLX3887, BLX769, NDGA and ML351 and that the synthesis of 15-LO metabolites by neutrophils does not involve the 15-LO-1 nor the phosphorylation of 5-LO on Ser-663 but is rather the consequence of 15-LO-2 or another unidentified 15-LO.


Arachidonate 15-Lipoxygenase/metabolism , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/metabolism , Eosinophils/metabolism , Lipoxygenase Inhibitors/pharmacology , Neutrophils/metabolism , Dose-Response Relationship, Drug , Female , Humans , Male , Time Factors
14.
Front Med (Lausanne) ; 4: 136, 2017.
Article En | MEDLINE | ID: mdl-28848734

Asthma is an inflammatory disease usually characterized by increased Type 2 cytokines and by an infiltration of eosinophils to the airways. While the production of Type 2 cytokines has been associated with TH2 lymphocytes, increasing evidence indicates that group 2 innate lymphoid cells (ILC2) play an important role in the production of the Type 2 cytokines interleukin (IL)-5 and IL-13, which likely amplifies the recruitment of eosinophils from the blood to the airways. In that regard, recent asthma treatments have been focusing on blocking Type 2 cytokines, notably IL-4, IL-5, and IL-13. These treatments mainly result in decreased blood or sputum eosinophil counts as well as decreased asthma symptoms. This supports that therapies blocking eosinophil recruitment and activation are valuable tools in the management of asthma and its severity. Herein, we review the mechanisms involved in eosinophil and ILC2 recruitment to the airways, with an emphasis on eotaxins, other chemokines as well as their receptors. We also discuss the involvement of other chemoattractants, notably the bioactive lipids 5-oxo-eicosatetraenoic acid, prostaglandin D2, and 2-arachidonoyl-glycerol. Given that eosinophil biology differs between human and mice, we also highlight and discuss their responsiveness toward the different eosinophil chemoattractants.

15.
PLoS One ; 12(1): e0169804, 2017.
Article En | MEDLINE | ID: mdl-28068410

LTB4 is an inflammatory lipid mediator mainly biosynthesized by leukocytes. Since its implication in inflammatory diseases is well recognized, many tools to regulate its biosynthesis have been developed and showed promising results in vitro and in vivo, but mixed results in clinical trials. Recently, the mTOR pathway component p70S6 kinase 1 (p70S6K1) has been linked to LTC4 synthase and the biosynthesis of cysteinyl-leukotrienes. In this respect, we investigated if p70S6K1 could also play a role in LTB4 biosynthesis. We thus evaluated the impact of the p70S6K1 inhibitors PF-4708671 and LY2584702 on LTB4 biosynthesis in human neutrophils. At a concentration of 10 µM, both compounds inhibited S6 phosphorylation, although neither one inhibited the thapsigargin-induced LTB4 biosynthesis, as assessed by the sum of LTB4, 20-OH-LTB4, and 20-COOH-LTB4. However, PF-4708671, but not LY2584702, inhibited the ω-oxidation of LTB4 into 20-OH-LTB4 by intact neutrophils and by recombinant CYP4F3A, leading to increased LTB4 levels. This was true for both endogenously biosynthesized and exogenously added LTB4. In contrast to that of 17-octadecynoic acid, the inhibitory effect of PF-4708671 was easily removed by washing the neutrophils, indicating that PF-4708671 was a reversible CYP4F3A inhibitor. At optimal concentration, PF-4708671 increased the half-life of LTB4 in our neutrophil suspensions by 7.5 fold, compared to 5 fold for 17-octadecynoic acid. Finally, Michaelis-Menten and Lineweaver-Burk plots indicate that PF-4708671 is a mixed inhibitor of CYP4F3A. In conclusion, we show that PF-4708671 inhibits CYP4F3A and prevents the ω-oxidation of LTB4 in cellulo, which might result in increased LTB4 levels in vivo.


Cytochrome P450 Family 4/antagonists & inhibitors , Imidazoles/pharmacology , Leukotriene B4/metabolism , Oxidation-Reduction/drug effects , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Ribosomal Protein S6 Kinases, 70-kDa/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Enzyme Activation , Humans , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/metabolism
16.
J Allergy Clin Immunol ; 136(4): 904-13, 2015 Oct.
Article En | MEDLINE | ID: mdl-25936567

BACKGROUND: High pulmonary eosinophil counts are associated with asthma symptoms and severity. Bronchial epithelial cells (BECs) produce CC chemokines, notably CCL26 (eotaxin-3), which recruits and activates eosinophils from asthmatic patients. This suggests that CCL26 production by BECs might be involved in persistent eosinophilia in patients with severe asthma despite treatment with high corticosteroid doses. OBJECTIVE: We sought to determine whether CCL26 levels correlate with eosinophilia and asthma severity. METHODS: Human CC chemokine expression was assessed by means of quantitative PCR or a quantitative PCR array in vehicle- or IL-13-treated BECs. CCL26 was quantitated by means of ELISA. Immunohistochemistry analyses of CCL26 and major basic protein were done on bronchial biopsy specimens. RESULTS: IL-13 selectively induced CCL26 expression by BECs. This increase was time-dependent and more prominent in BECs from patients with severe eosinophilic asthma. CCL26 levels measured in supernatants of IL-13-stimulated BECs also increased with asthma severity as follows: patients with severe eosinophilic asthma > patients with mild asthma ≈ healthy subjects. Immunohistochemistry analyses of bronchial biopsy specimens confirmed increased levels of CCL26 in the epithelium of patients with mild and those with severe eosinophilic asthma. Tissue eosinophil counts did not correlate with CCL26 staining. However, sputum CCL26 levels significantly correlated with sputum eosinophil counts (P < .0001), suggesting that CCL26 participates in the movement of eosinophils from the tissues to the airway lumen. CONCLUSIONS: These results show a relation between CCL26 production by IL-13-stimulated BECs, sputum eosinophil counts, and asthma severity. They also suggest a role for CCL26 in the sustained inflammation observed in patients with severe eosinophilic asthma and reveal CCL26 as a potential target for treating patients with eosinophilic asthma that are refractory to classic therapies.


Asthma/immunology , Bronchi/pathology , Chemokines, CC/metabolism , Eosinophilia/immunology , Epithelial Cells/metabolism , Adult , Cells, Cultured , Chemokine CCL26 , Disease Progression , Eosinophil Major Basic Protein/metabolism , Female , Humans , Immunohistochemistry , Interleukin-13/immunology , Male
...