Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Physiol Rep ; 9(8): e14782, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33931957

RESUMEN

Internal jugular flow is reduced in space compared with supine values, which can be associated with internal jugular vein (IJV) thrombosis. The mechanism is unknown but important to understand to prevent potentially serious vein thromboses on long duration flights. We used a novel, microgravity-focused numerical model of the cranial vascular circulation to develop hypotheses for the reduced flow. This model includes the effects of removing hydrostatic gradients and tissue compressive forces - unique effects of weightlessness. The IJV in the model incorporates sensitivity to transmural pressure across the vein, which can dramatically affect resistance and flow in the vein. The model predicts reduced IJV flow in space. Although tissue weight in the neck is reduced in weightlessness, increasing transmural pressure, this is more than offset by the reduction in venous pressure produced by the loss of hydrostatic gradients and tissue pressures throughout the body. This results in a negative transmural pressure and increased IJV resistance. Unlike the IJV, the walls of the vertebral plexus are rigid; transmural pressure does not affect its resistance and so its flow increases in microgravity. This overall result is supported by spaceflight measurements, showing reduced IJV area inflight compared with supine values preflight. Significantly, this hypothesis suggests that interventions that further decrease internal IJV pressure (such as lower body negative pressure), which are not assisted by other drainage mechanisms (e.g. gravity), might lead to stagnant flow or IJV collapse with reduced flow, which could increase rather than decrease the risk of venous thrombosis.


Asunto(s)
Simulación por Computador , Venas Yugulares/fisiología , Flujo Sanguíneo Regional , Ingravidez/efectos adversos , Humanos , Venas Yugulares/diagnóstico por imagen , Posición Supina
3.
Am J Physiol Regul Integr Comp Physiol ; 315(3): R496-R499, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29768035

RESUMEN

On Earth, tissue weight generates compressive forces that press on body structures and act on the walls of vessels throughout the body. In microgravity, tissues no longer have weight, and tissue compressive forces are lost, suggesting that individuals who weigh more may show greater effects from microgravity exposure. One unique effect of long-duration microgravity exposure is spaceflight-associated neuroocular syndrome (SANS), which can present with globe flattening, choroidal folds, optic disk edema, and a hyperopic visual shift. To determine whether weight or other anthropometric measures are related to ocular changes in space, we analyzed data from 45 individual long-duration astronauts (mean age 47, 36 male, 9 female, mean mission duration 165 days) who had pre- and postflight measures of disk edema, choroidal folds, and manifest ocular refraction. The mean preflight weights of astronauts who developed new choroidal folds [78.6 kg with no new folds vs. 88.6 kg with new folds ( F = 6.2, P = 0.02)] and disk edema [79.1 kg with no edema vs. 95 kg with edema ( F = 9.6, P = 0.003)] were significantly greater than those who did not. Chest and waist circumferences were also significantly greater in those who developed folds or edema. The odds of developing disk edema or new choroidal folds were 55% in the highest- and 9% in the lowest-weight quartile. In this cohort, no women developed disk edema or choroidal folds, although women also weighed significantly less than men [62.9 vs. 85.2 kg ( F = 53.2, P < 0.0001)]. Preflight body weight and anthropometric factors may predict microgravity-induced ocular changes.


Asunto(s)
Astronautas , Peso Corporal , Enfermedades de la Coroides/etiología , Ojo/fisiopatología , Papiledema/etiología , Vuelo Espacial , Trastornos de la Visión/etiología , Visión Ocular , Ingravidez/efectos adversos , Enfermedades de la Coroides/diagnóstico , Enfermedades de la Coroides/fisiopatología , Femenino , Humanos , Masculino , Papiledema/diagnóstico , Papiledema/fisiopatología , Factores de Riesgo , Factores de Tiempo , Trastornos de la Visión/diagnóstico , Trastornos de la Visión/fisiopatología
4.
ChemSusChem ; 7(9): 2721-7, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25088298

RESUMEN

During the pretreatment of cellulosic biomass for subsequent microbial or enzymatic processing, the fiber reactivity typically increases with increasing severity but so does sugar degradation. Experimental results with sugarcane bagasse show that this tradeoff can be mitigated substantially by pretreatment in a flow-through (FT) mode. A model that incorporates both kinetics and mass transfer was developed to simulate the performance of pretreatment in plug flow, counter-current flow, cross flow, discrete counter-current and partial FT configurations. The simulated results compare well to the literature for bagasse pretreated in both batch and FT configurations. A variety of FT configurations result in sugar degradation that is very low (1-5%) and 5-20-fold less than a conventional plug flow configuration. The performance exhibits strong sensitivity to the extent of hemicellulose solubilization, particularly for a conventional plug flow configuration.


Asunto(s)
Celulosa/química , Calor , Modelos Químicos , Saccharum/química , Agua/química , Hidrólisis , Cinética , Polisacáridos/química , Solubilidad
5.
Bioresour Technol ; 157: 278-83, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24566286

RESUMEN

The present study investigates fluid mechanical properties of cellulosic feedstocks relevant to flow through (FT) pretreatment for biological conversion of cellulosic biomass. The results inform identifying conditions for which FT pretreatment can be implemented in a practical context. Measurements of pressure drop across packed beds, viscous compaction and water absorption are reported for milled and not milled sugarcane bagasse, switchgrass and poplar, and important factors impacting viscous flow are deduced. Using biomass knife-milled to pass through a 2mm sieve, the observed pressure drop was highest for bagasse, intermediate for switchgrass and lowest for poplar. The highest pressure drop was associated with the presence of more fine particles, greater viscous compaction and the degree of water absorption. Using bagasse without particle size reduction, the instability of the reactor during pretreatment above 140kg/m(3) sets an upper bound on the allowable concentration for continuous stable flow.


Asunto(s)
Biomasa , Celulosa/metabolismo , Reología , Absorción Fisicoquímica , Reactores Biológicos , Tamaño de la Partícula , Presión , Factores de Tiempo , Viscosidad , Agua/química
6.
Biotechnol Biofuels ; 5(1): 49, 2012 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-22812930

RESUMEN

BACKGROUND: The impact of hydrothermal flowthrough (FT) pretreatment severity on pretreatment and solubilization performance metrics was evaluated for three milled feedstocks (corn stover, bagasse, and poplar) and two conversion systems (simultaneous saccharification and fermentation using yeast and fungal cellulase, and fermentation by Clostridium thermocellum). RESULTS: Compared to batch pretreatment, FT pretreatment consistently resulted in higher XMG recovery, higher removal of non-carbohydrate carbon and higher glucan solubilization by simultaneous saccharification and fermentation (SSF). XMG recovery was above 90% for FT pretreatment below 4.1 severity but decreased at higher severities, particularly for bagasse. Removal of non-carbohydrate carbon during FT pretreatment increased from 65% at low severity to 80% at high severity for corn stover, and from 40% to 70% for bagasse and poplar.Solids obtained by FT pretreatment were amenable to high conversion for all of the feedstocks and conversion systems examined. The optimal time and temperature for FT pretreatment on poplar were found to be 16 min and 210°C. At these conditions, SSF glucan conversion was about 85%, 94% of the XMG was removed, and 62% of the non carbohydrate mass was solubilized. Solubilization of FT-pretreated poplar was compared for C. thermocellum fermentation (10% inoculum), and for yeast-fungal cellulase SSF (5% inoculum, cellulase loading of 5 and 10 FPU/g glucan supplemented with ß-glucosidase at 15 and 30 U/g glucan). Under the conditions tested, which featured low solids concentration, C. thermocellum fermentation achieved faster rates and more complete conversion of FT-pretreated poplar than did SSF. Compared to SSF, solubilization by C. thermocellum was 30% higher after 4 days, and was over twice as fast on ball-milled FT-pretreated poplar. CONCLUSIONS: XMG removal trends were similar between feedstocks whereas glucan conversion trends were significantly different, suggesting that factors in addition to XMG removal impact amenability of glucan to enzymatic attack. Corn stover exhibited higher hydrolysis yields than bagasse or poplar, which could be due to higher removal of non-carbohydrate carbon. XMG in bagasse is more easily degraded than XMG in corn stover and poplar. Conversion of FT-pretreated substrates at low concentration was faster and more complete for C. thermocellum than for SSF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...