Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
J Environ Qual ; 2024 May 19.
Article En | MEDLINE | ID: mdl-38764352

Cropland agriculture in the northern Great Plains is challenged by variable weather, agricultural intensification, and competing use for energy development. Innovative cropland practices that address these challenges are needed to ensure regional agriculture can sustainably meet future food, fuel, and fiber demand. In response to this need, the Northern Plains Long-Term Agroecosystem Research Network site established a cropland experiment in 2019 that contrasts prevailing and alternative practices at plot and field scales over a proposed 30-year time frame. The experimental site is located on the Area IV Soil Conservation Districts Cooperative Research Farm near Mandan, ND. Cropping practices for the first 6 years of the experiment were developed with input from stakeholders and include a 3-year crop rotation of spring wheat (Triticum aestivum L.), corn (Zea mays L.), and soybean (Glycine max L.) with cover crops (alternative practice) and without (prevailing practice). The prevailing practice also involves the removal of crop residue, while a second alternative practice of perennial forages is included in the plot-scale experiment. Biophysical measurements are made at both spatial scales at frequencies aligned with approved methods for each agronomic and environmental metric. Findings from the first 6 years of the experiment will help identify tradeoffs associated with cover crop use and residue removal in dryland cropping systems. In the future, the experiment will adopt a knowledge co-production approach whereby researchers and stakeholders will work collaboratively to identify problems, implement research, and interpret results.

2.
Elife ; 122023 Jun 09.
Article En | MEDLINE | ID: mdl-37294664

Prolonged exposure to loud noise has been shown to affect inner ear sensory hair cells in a variety of deleterious manners, including damaging the stereocilia core. The damaged sites can be visualized as 'gaps' in phalloidin staining of F-actin, and the enrichment of monomeric actin at these sites, along with an actin nucleator and crosslinker, suggests that localized remodeling occurs to repair the broken filaments. Herein, we show that gaps in mouse auditory hair cells are largely repaired within 1 week of traumatic noise exposure through the incorporation of newly synthesized actin. We provide evidence that Xin actin binding repeat containing 2 (XIRP2) is required for the repair process and facilitates the enrichment of monomeric γ-actin at gaps. Recruitment of XIRP2 to stereocilia gaps and stress fiber strain sites in fibroblasts is force-dependent, mediated by a novel mechanosensor domain located in the C-terminus of XIRP2. Our study describes a novel process by which hair cells can recover from sublethal hair bundle damage and which may contribute to recovery from temporary hearing threshold shifts and the prevention of age-related hearing loss.


Actins , Stereocilia , Animals , Mice , Actin Cytoskeleton/metabolism , Actins/metabolism , Hair Cells, Auditory/metabolism , Hair Cells, Auditory, Inner/metabolism , Stereocilia/metabolism
3.
J Environ Qual ; 52(3): 549-557, 2023.
Article En | MEDLINE | ID: mdl-36853851

Global warming potential (GWP) estimates from agroecosystems are valuable for understanding management effects on climate regulation services. However, GWP estimates are complex, including attributes with high spatiotemporal variability. Published GWP estimates from cropland were compiled and methodological attributes known to influence GWP were extracted. Results revealed considerable variation in approaches to estimate GWP. Among carbon balance methods, respiration methods were used most frequently (33%), followed by soil carbon stock change over time (30%). Twenty-six percent of studies did not account for carbon change in GWP estimates. Duration of gas flux measurements ranged from 0.5 to 60 months, with weekly and sub-weekly sampling most common (34% and 33%, respectively). Carbon dioxide equivalent conversion factors generally aligned with Intergovernmental Panel on Climate Change recommendations through 2014 but diverged thereafter. This review suggests the need for increased transparency in how GWP estimates are derived and communicated. Presentation of key metadata alongside GWP estimates is recommended.


Global Warming , Greenhouse Effect , Carbon Dioxide/analysis , Soil , Crops, Agricultural
4.
J Environ Qual ; 49(6): 1515-1529, 2020 Nov.
Article En | MEDLINE | ID: mdl-33150625

In the northern Great Plains (NGP), wheat is the primary grain commodity. There is a need for the NGP to have a detailed analysis of environmental impacts for wheat-based agricultural production systems to better understand regional agroecosystems. This article provides a cradle-to-field gate life cycle assessment (LCA) for NGP dryland wheat (Triticum aestivum L.) production. The environmental impacts for winter wheat production using crop rotation and agricultural intensification are quantified. Fourteen no-till crop rotations ranging in duration from 2 to 6 yr were evaluated and compared using data from a historical 13-yr replicated rotation study (>300 observations). Midpoint LCA categories chosen for this comparison are energy, agricultural land use, climate change potential, freshwater eutrophication, and freshwater ecotoxicity due to their direct links with agricultural management practices. The NGP farmers commonly use a fallow period every other year due to moisture limitations. This specific agricultural practice and allocations within rotations are critical considerations within agricultural LCAs. Two aspects of fallow considerations and a sensitivity analysis were also performed. The allocated midpoint impacts between crops in rotational studies averaged 0.31, 0.79, 0.62, and 0.63 kg CO2 eq. per unit of winter wheat when energy, economic, mass, and cereal unit allocations were used, respectively. Economic analysis of the studied experimental crop was performed; results demonstrated that crop insurance policies improved diversification economics by 20%. Agricultural diversification benefits and burdens were better represented by endpoint damage assessments than by midpoint impact analysis.


Agriculture , Triticum , Animals , Crop Production , Crops, Agricultural , Life Cycle Stages
5.
J Environ Qual ; 47(1): 1-15, 2018 Jan.
Article En | MEDLINE | ID: mdl-29415112

Integrated crop-livestock systems hold potential to achieve environmentally sustainable production of crop and livestock products. Although previous studies suggest that integrated crop-livestock systems improve soil health, impacts of integrated crop-livestock systems on water quality and aquatic ecosystems are largely unknown. This review (i) summarizes studies examining surface water quality and soil leachate for management practices commonly used in integrated crop-livestock systems (e.g., no-till, cover crops, livestock grazing) with emphasis on the Northern Great Plains ecoregion of North America, (ii) quantifies management system effects on nutrient and total suspended solids concentrations and loads, and (iii) identifies information gaps regarding water quality associated with integrated crop-livestock systems and research needs in this area. In general, management practices used in integrated crop-livestock systems reduced losses of total suspended solids, nitrogen (N), and phosphorus (P) in surface runoff and soil leachate. However, certain management practices (e.g., no-till or reduced tillage) reduced losses of total N (relative median change = -65%), whereas soluble P losses in runoff increased (57%). Conversely, practices such as grazing increased median total suspended solids (22%), nitrate (45%), total N (85%), and total P (25%) concentrations and loads in surface runoff and aquatic ecosystems. An improved understanding of the interactive effects of integrated crop-livestock management practices on surface water quality and soil leachate under current and future climate scenarios is urgently needed. To close this knowledge gap, future studies should focus on determining concentrations and loads of total suspended solids, N, P, and organic carbon in runoff and soil leachate from integrated crop-livestock systems.


Livestock , Water Quality , Agriculture , Animals , Nitrogen , Phosphorus , Soil
6.
PLoS One ; 10(8): e0136580, 2015.
Article En | MEDLINE | ID: mdl-26308552

Anecdotal accounts regarding reduced US cropping system diversity have raised concerns about negative impacts of increasingly homogeneous cropping systems. However, formal analyses to document such changes are lacking. Using US Agriculture Census data, which are collected every five years, we quantified crop species diversity from 1978 to 2012, for the contiguous US on a county level basis. We used Shannon diversity indices expressed as effective number of crop species (ENCS) to quantify crop diversity. We then evaluated changes in county-level crop diversity both nationally and for each of the eight Farm Resource Regions developed by the National Agriculture Statistics Service. During the 34 years we considered in our analyses, both national and regional ENCS changed. Nationally, crop diversity was lower in 2012 than in 1978. However, our analyses also revealed interesting trends between and within different Resource Regions. Overall, the Heartland Resource Region had the lowest crop diversity whereas the Fruitful Rim and Northern Crescent had the highest. In contrast to the other Resource Regions, the Mississippi Portal had significantly higher crop diversity in 2012 than in 1978. Also, within regions there were differences between counties in crop diversity. Spatial autocorrelation revealed clustering of low and high ENCS and this trend became stronger over time. These results show that, nationally counties have been clustering into areas of either low diversity or high diversity. Moreover, a significant trend of more counties shifting to lower rather than to higher crop diversity was detected. The clustering and shifting demonstrates a trend toward crop diversity loss and attendant homogenization of agricultural production systems, which could have far-reaching consequences for provision of ecosystem system services associated with agricultural systems as well as food system sustainability.


Agriculture/methods , Biodiversity , Crops, Agricultural/classification , Crops, Agricultural/growth & development , Ecosystem , Humans , United States
7.
J Environ Qual ; 41(4): 973-89, 2012.
Article En | MEDLINE | ID: mdl-22751040

Biochar has been heralded as an amendment to revitalize degraded soils, improve soil carbon sequestration, increase agronomic productivity, and enter into future carbon trading markets. However, scientific and economic technicalties may limit the ability of biochar to consistently deliver on these expectations. Past research has demonstrated that biochar is part of the black carbon continuum with variable properties due to the net result of production (e.g., feedstock and pyrolysis conditions) and postproduction factors (storage or activation). Therefore, biochar is not a single entity but rather spans a wide range of black carbon forms. Biochar is black carbon, but not all black carbon is biochar. Agronomic benefits arising from biochar additions to degraded soils have been emphasized, but negligible and negative agronomic effects have also been reported. Fifty percent of the reviewed studies reported yield increases after black carbon or biochar additions, with the remainder of the studies reporting alarming decreases to no significant differences. Hardwood biochar (black carbon) produced by traditional methods (kilns or soil pits) possessed the most consistent yield increases when added to soils. The universality of this conclusion requires further evaluation due to the highly skewed feedstock preferences within existing studies. With global population expanding while the amount of arable land remains limited, restoring soil quality to nonproductive soils could be key to meeting future global food production, food security, and energy supplies; biochar may play a role in this endeavor. Biochar economics are often marginally viable and are tightly tied to the assumed duration of agronomic benefits. Further research is needed to determine the conditions under which biochar can provide economic and agronomic benefits and to elucidate the fundamental mechanisms responsible for these benefits.


Agriculture/methods , Carbon/chemistry , Soil , Agriculture/economics , Crops, Agricultural/growth & development , Environment , Environmental Pollutants/chemistry
8.
J Environ Qual ; 40(5): 1551-9, 2011.
Article En | MEDLINE | ID: mdl-21869517

Agricultural management practices that enhance C sequestration, reduce greenhouse gas emission (nitrous oxide [N2O], methane [CH4], and carbon dioxide [CO2]), and promote productivity are needed to mitigate global warming without sacrificing food production. The objectives of the study were to compare productivity, greenhouse gas emission, and change in soil C over time and to assess whether global warming potential and global warming potential per unit biomass produced were reduced through combined mitigation strategies when implemented in the northern U.S. Corn Belt. The systems compared were (i) business as usual (BAU); (ii) maximum C sequestration (MAXC); and (iii) optimum greenhouse gas benefit (OGGB). Biomass production, greenhouse gas flux change in total and organic soil C, and global warming potential were compared among the three systems. Soil organic C accumulated only in the surface 0 to 5 cm. Three-year average emission of N2O and CH was similar among all management systems. When integrated from planting to planting, N2O emission was similar for MAXC and OGGB systems, although only MAXC was fertilized. Overall, the three systems had similar global warming potential based on 4-yr changes in soil organic C, but average rotation biomass was less in the OGGB systems. Global warming potential per dry crop yield was the least for the MAXC system and the most for OGGB system. This suggests management practices designed to reduce global warming potential can be achieved without a loss of productivity. For example, MAXC systems over time may provide sufficient soil C sequestration to offset associated greenhouse gas emission.


Crops, Agricultural , Global Warming , Zea mays , Biomass , Gases , Greenhouse Effect , United States
9.
J Environ Qual ; 38(4): 1569-79, 2009.
Article En | MEDLINE | ID: mdl-19549933

Microbial production and consumption of greenhouse gases (GHG) is influenced by temperature and nutrients, especially during the first few weeks after agricultural fertilization. The effect of fertilization on GHG fluxes should occur during and shortly after application, yet data indicating how application timing affects both GHG fluxes and crop yields during a growing season are lacking. We designed a replicated (n = 5) field experiment to test for the short-term effect of fertilizer application timing on fluxes of methane (CH(4)), carbon dioxide (CO(2)), and nitrous oxide (N(2)O) over a growing season in the northern Great Plains. Each 0.30-ha plot was planted to maize (Zea mays L.) and treated similarly with the exception of fertilizer timing: five plots were fertilized with urea in early spring (1 April) and five plots were fertilized with urea in late spring (13 May). We hypothesized time-integrated fluxes over a growing season would be greater for the late-spring treatment, resulting in a greater net GHG flux, as compared to the early-spring treatment. Data collected on 59 dates and integrated over a 5-mo time course indicated CO(2) fluxes were greater (P < 0.0001) and CH(4) fluxes were lower (P < 0.05) for soils fertilized in late spring. Net GHG flux was also significantly affected by treatment, with 0.84 +/- 0.11 kg CO(2) equivalents m(-2) for early spring and 1.04 +/- 0.13 kg CO(2) equivalents m(-2) for late spring. Nitrous oxide fluxes, however, were similar for both treatments. Results indicate fertilizer application timing influences net GHG emissions in dryland cropping systems.


Crops, Agricultural/growth & development , Fertilizers , Gases/analysis , Seasons , Zea mays/growth & development , Soil , Time and Motion Studies
...