Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Clin Perinatol ; 51(2): 441-459, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705651

RESUMEN

Throughout pregnancy, the maternal peripheral circulation contains valuable information reflecting pregnancy progression, detectable as tightly regulated immune dynamics. Local immune processes at the maternal-fetal interface and other reproductive and non-reproductive tissues are likely to be the pacemakers for this peripheral immune "clock." This cellular immune status of pregnancy can be leveraged for the early risk assessment and prediction of spontaneous preterm birth (sPTB). Systems immunology approaches to sPTB subtypes and cross-tissue (local and peripheral) interactions, as well as integration of multiple biological data modalities promise to improve our understanding of preterm birth pathobiology and identify potential clinically actionable biomarkers.


Asunto(s)
Nacimiento Prematuro , Humanos , Embarazo , Femenino , Nacimiento Prematuro/inmunología , Biomarcadores , Medición de Riesgo , Recién Nacido
2.
EMBO Mol Med ; 16(4): 700-714, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467841

RESUMEN

Communication via biological mediators between mother and fetus are key to reproductive success and offspring's future health. The repertoire of mediators coding signals between mother and fetus is broad and includes soluble factors, membrane-bound particles and immune as well as non-immune cells. Based on the emergence of technological advancements over the last years, considerable progress has been made toward deciphering the "communicatome" between fetus and mother during pregnancy and even after birth. In this context, pregnancy-associated chimerism has sparked the attention among immunologists, since chimeric cells-although low in number-are maintained in the allogeneic host (mother or fetus) for years after birth. Other non-cellular structures of chimerism, e.g. extracellular vesicles (EVs), are increasingly recognized as modulators of pregnancy outcome and offspring's health. We here discuss the origin, distribution and function of pregnancy-acquired microchimerism and chimeric EVs in mother and offspring. We also highlight the pioneering concept of maternal microchimeric cell-derived EVs in offspring. Such insights expand the understanding of pregnancy-associated health or disease risks in mother and offspring.


Asunto(s)
Quimerismo , Feto , Femenino , Embarazo , Humanos , Células Madre
3.
Circulation ; 149(2): 95-106, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-37982257

RESUMEN

BACKGROUND: Preeclampsia shares numerous risk factors with cardiovascular diseases. Here, we aimed to assess the potential utility of high-sensitivity cardiac troponin I (hs-cTnI) values during pregnancy in predicting preeclampsia occurrence. METHODS: This study measured hs-cTnI levels in 3721 blood samples of 2245 pregnant women from 4 international, prospective cohorts. Three analytical approaches were used: (1) a cross-sectional analysis of all women using a single blood sample, (2) a longitudinal analysis of hs-cTnI trajectories in women with multiple samples, and (3) analyses of prediction models incorporating hs-cTnI, maternal factors, and the sFlt-1 (soluble fms-like tyrosine kinase 1)/PlGF (placental growth factor) ratio. RESULTS: Women with hs-cTnI levels in the upper quarter had higher odds ratios for preeclampsia occurrence compared with women with levels in the lower quarter. Associations were driven by preterm preeclampsia (odds ratio, 5.78 [95% CI, 2.73-12.26]) and remained significant when using hs-cTnI as a continuous variable adjusted for confounders. Between-trimester hs-cTnI trajectories were independent of subsequent preeclampsia occurrence. A prediction model incorporating a practical hs-cTnI level of detection cutoff (≥1.9 pg/mL) alongside maternal factors provided comparable performance with the sFlt-1/PlGF ratio. A comprehensive model including sFlt-1/PlGF, maternal factors, and hs-cTnI provided added value (cross-validated area under the receiver operator characteristic, 0.78 [95% CI, 0.73-0.82]) above the sFlt-1/PlGF ratio alone (cross-validated area under the receiver operator characteristic, 0.70 [95% CI, 0.65-0.76]; P=0.027). As assessed by likelihood ratio tests, the addition of hs-cTnI to each prediction model significantly improved the respective prediction model not incorporating hs-cTnI, particularly for preterm preeclampsia. Net reclassification improvement analyses indicated that incorporating hs-cTnI improved risk prediction predominantly by correctly reclassifying women with subsequent preeclampsia occurrence. CONCLUSIONS: These exploratory findings uncover a potential role for hs-cTnI as a complementary biomarker in the prediction of preeclampsia. After validation in prospective studies, hs-cTnI, alongside maternal factors, may either be considered as a substitute for angiogenic biomarkers in health care systems where they are sparce or unavailable, or as an enhancement to established prediction models using angiogenic markers.


Asunto(s)
Preeclampsia , Recién Nacido , Embarazo , Femenino , Humanos , Factor de Crecimiento Placentario , Preeclampsia/diagnóstico , Estudios Prospectivos , Troponina I , Estudios Transversales , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Biomarcadores
4.
J Hepatol ; 80(4): 634-644, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38160941

RESUMEN

BACKGROUND & AIMS: The liver is one of the organs most commonly affected by metastasis. The presence of liver metastases has been reported to be responsible for an immunosuppressive microenvironment and diminished immunotherapy efficacy. Herein, we aimed to investigate the role of IL-10 in liver metastasis and to determine how its modulation could affect the efficacy of immunotherapy in vivo. METHODS: To induce spontaneous or forced liver metastasis in mice, murine cancer cells (MC38) or colon tumor organoids were injected into the cecum or the spleen, respectively. Mice with complete and cell type-specific deletion of IL-10 and IL-10 receptor alpha were used to identify the source and the target of IL-10 during metastasis formation. Programmed death ligand 1 (PD-L1)-deficient mice were used to test the role of this checkpoint. Flow cytometry was applied to characterize the regulation of PD-L1 by IL-10. RESULTS: We found that Il10-deficient mice and mice treated with IL-10 receptor alpha antibodies were protected against liver metastasis formation. Furthermore, by using IL-10 reporter mice, we demonstrated that Foxp3+ regulatory T cells (Tregs) were the major cellular source of IL-10 in liver metastatic sites. Accordingly, deletion of IL-10 in Tregs, but not in myeloid cells, led to reduced liver metastasis. Mechanistically, IL-10 acted on Tregs in an autocrine manner, thereby further amplifying IL-10 production. Furthermore, IL-10 acted on myeloid cells, i.e. monocytes, and induced the upregulation of the immune checkpoint protein PD-L1. Finally, the PD-L1/PD-1 axis attenuated CD8-dependent cytotoxicity against metastatic lesions. CONCLUSIONS: Treg-derived IL-10 upregulates PD-L1 expression in monocytes, which in turn reduces CD8+ T-cell infiltration and related antitumor immunity in the context of colorectal cancer-derived liver metastases. These findings provide the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastases. IMPACT AND IMPLICATIONS: Liver metastasis diminishes the effectiveness of immunotherapy and increases the mortality rate in patients with colorectal cancer. We investigated the role of IL-10 in liver metastasis formation and assessed its impact on the effectiveness of immunotherapy. Our data show that IL-10 is a pro-metastatic factor involved in liver metastasis formation and that it acts as a regulator of PD-L1. This provides the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastasis.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Animales , Humanos , Ratones , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos , Línea Celular Tumoral , Interleucina-10 , Neoplasias Hepáticas/patología , Receptores de Interleucina-10 , Microambiente Tumoral
5.
Oncoimmunology ; 12(1): 2269634, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37876835

RESUMEN

Metastasis is a cancer-related systemic disease and is responsible for the greatest mortality rate among cancer patients. Interestingly, the interaction between the immune system and cancer cells seems to play a key role in metastasis formation in the target organ. However, this complex network is only partially understood. We previously found that IL-22 produced by tissue resident iNKT17 cells promotes cancer cell extravasation, the early step of metastasis. Based on these data, we aimed here to decipher the role of IL-22 in the last step of metastasis formation. We found that IL-22 levels were increased in established metastatic sites in both human and mouse. We also found that Th22 cells were the key source of IL-22 in established metastasis sites, and that deletion of IL-22 in CD4+ T cells was protective in liver metastasis formation. Accordingly, the administration of a murine IL-22 neutralizing antibody in the establishment of metastasis formation significantly reduced the metastatic burden in a mouse model. Mechanistically, IL-22-producing Th22 cells promoted angiogenesis in established metastasis sites. In conclusion, our findings highlight that IL-22 is equally as important in contributing to metastasis formation at late metastatic stages, and thus, identify it as a novel therapeutic target in established metastasis.


Asunto(s)
Linfocitos T CD4-Positivos , Neoplasias Hepáticas , Humanos , Animales , Ratones , Interleucinas , Interleucina-22
6.
EMBO Rep ; 24(10): e56829, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37610043

RESUMEN

Neonatal health is determined by the transfer of maternal antibodies from the mother to the fetus. Besides antibodies, maternal cells cross the placental barrier and seed into fetal organs. Contrary to maternal antibodies, maternal microchimeric cells (MMc) show a high longevity, as they can persist in the offspring until adulthood. Recent evidence highlights that MMc leukocytes promote neonatal immunity against early-life infections in mice and humans. As shown in mice, this promotion of immunity was attributable to an improved fetal immune development. Besides this indirect effect, MMc may be pathogen-specific and thus, directly clear pathogen threats in the offspring postnatally. By using ovalbumin recombinant Listeria monocytogenes (LmOVA), we here provide evidence that OVA-specific T cells are transferred from the mother to the fetus, which is associated with increased activation of T cells and a milder course of postnatal infection in the offspring. Our data highlight that maternally-derived passive immunity of the neonate is not limited to antibodies, as MMc have the potential to transfer immune memory between generations.

7.
Front Immunol ; 14: 1196395, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37475853

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic imposed a risk of infection and disease in pregnant women and neonates. Successful pregnancy requires a fine-tuned regulation of the maternal immune system to accommodate the growing fetus and to protect the mother from infection. Galectins, a family of ß-galactoside-binding proteins, modulate immune and inflammatory processes and have been recognized as critical factors in reproductive orchestration, including maternal immune adaptation in pregnancy. Pregnancy-specific glycoprotein 1 (PSG1) is a recently identified gal-1 ligand at the maternal-fetal interface, which may facilitate a successful pregnancy. Several studies suggest that galectins are involved in the immune response in SARS-CoV-2-infected patients. However, the galectins and PSG1 signature upon SARS-CoV-2 infection and vaccination during pregnancy remain unclear. In the present study, we examined the maternal circulating levels of galectins (gal-1, gal-3, gal-7, and gal-9) and PSG1 in pregnant women infected with SARS-CoV-2 before vaccination or uninfected women who were vaccinated against SARS-CoV-2 and correlated their expression with different pregnancy parameters. SARS-CoV-2 infection or vaccination during pregnancy provoked an increase in maternal gal-1 circulating levels. On the other hand, levels of PSG1 were only augmented upon SARS-CoV-2 infection. A healthy pregnancy is associated with a positive correlation between gal-1 concentrations and gal-3 or gal-9; however, no correlation was observed between these lectins during SARS-CoV-2 infection. Transcriptome analysis of the placenta showed that gal-1, gal-3, and several PSG and glycoenzymes responsible for the synthesis of gal-1-binding glycotopes (such as linkage-specific N-acetyl-glucosaminyltransferases (MGATs)) are upregulated in pregnant women infected with SARS-CoV-2. Collectively, our findings identify a dynamically regulated "galectin-specific signature" that accompanies the SARS-CoV-2 infection and vaccination in pregnancy, and they highlight a potentially significant role for gal-1 as a key pregnancy protective alarmin during virus infection.


Asunto(s)
COVID-19 , Placenta , Femenino , Humanos , Recién Nacido , Embarazo , Alarminas/metabolismo , COVID-19/metabolismo , Galectina 1/metabolismo , Galectinas/metabolismo , SARS-CoV-2/metabolismo
8.
Front Oncol ; 13: 1170502, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324022

RESUMEN

Background: The immune system plays a pivotal role in cancer progression. Interleukin 22 binding protein (IL-22BP), a natural antagonist of the cytokine interleukin 22 (IL-22) has been shown to control the progression of colorectal cancer (CRC). However, the role of IL-22BP in the process of metastasis formation remains unknown. Methods: We used two different murine in vivo metastasis models using the MC38 and LLC cancer cell lines and studied lung and liver metastasis formation after intracaecal or intrasplenic injection of cancer cells. Furthermore, IL22BP expression was measured in a clinical cohort of CRC patients and correlated with metastatic tumor stages. Results: Our data indicate that low levels of IL-22BP are associated with advanced (metastatic) tumor stages in colorectal cancer. Using two different murine in vivo models we show that IL-22BP indeed controls the progression of liver but not lung metastasis in mice. Conclusions: We here demonstrate a crucial role of IL-22BP in controlling metastasis progression. Thus, IL-22 might represent a future therapeutic target against the progression of metastatic CRC.

9.
Cancers (Basel) ; 14(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36551508

RESUMEN

Hepatocellular carcinoma (HCC) ranks among the five most common cancer entities worldwide and leads to hundred-thousands of deaths every year. Despite some groundbreaking therapeutical revelations during the last years, the overall prognosis remains poor. Although the immune system fights malignant transformations with a robust anti-tumor response, certain immune mediators have also been shown to promote cancer development. For example, interleukin (IL)-22 has been associated with HCC progression and worsened prognosis in multiple studies. However, the underlying mechanisms of the pathological role of IL-22-signaling as well as the role of its natural antagonist IL-22 binding protein (IL-22BP) in HCC remain elusive. Here, we corroborate the pathogenic role of IL-22 in HCC by taking advantage of two mouse models. Moreover, we observed a protective role of IL-22BP during liver carcinogenesis. While IL-22 was mainly produced by CD4+ T cells in HCC, IL-22BP was abundantly expressed by neutrophils during liver carcinogenesis. Hepatocytes could be identified as a major target of this pathological IL-22-signaling. Moreover, abrogation of IL-22 signaling in hepatocytes in IL22ra1flox/flox × AlbCre+ mice reduced STEAP4 expression-a known oncogene-in HCC in vivo. Likewise, STEAP4 expression correlated with IL22 levels in human HCC samples, but not in healthy liver specimens. In conclusion, these data encourage the development of therapeutical approaches that target the IL-22-IL-22BP axis in HCC.

10.
Nat Commun ; 13(1): 4571, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35931682

RESUMEN

Life-long brain function and mental health are critically determined by developmental processes occurring before birth. During mammalian pregnancy, maternal cells are transferred to the fetus. They are referred to as maternal microchimeric cells (MMc). Among other organs, MMc seed into the fetal brain, where their function is unknown. Here, we show that, in the offspring's developing brain in mice, MMc express a unique signature of sensome markers, control microglia homeostasis and prevent excessive presynaptic elimination. Further, MMc facilitate the oscillatory entrainment of developing prefrontal-hippocampal circuits and support the maturation of behavioral abilities. Our findings highlight that MMc are not a mere placental leak out, but rather a functional mechanism that shapes optimal conditions for healthy brain function later in life.


Asunto(s)
Quimerismo , Intercambio Materno-Fetal , Animales , Femenino , Feto , Mamíferos , Ratones , Parto , Placenta , Embarazo
11.
Front Immunol ; 13: 907994, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860238

RESUMEN

In multiple sclerosis (MS), relapse rate is decreased by 70-80% in the third trimester of pregnancy. However, the underlying mechanisms driving this effect are poorly understood. Evidence suggests that CD56bright NK cell frequencies increase during pregnancy. Here, we analyze pregnancy-related NK cell shifts in a large longitudinal cohort of pregnant women with and without MS, and provide in-depth phenotyping of NK cells. In healthy pregnancy and pregnancy in MS, peripheral blood NK cells showed significant frequency shifts, notably an increase of CD56bright NK cells and a decrease of CD56dim NK cells toward the third trimester, indicating a general rather than an MS-specific phenomenon of pregnancy. Additional follow-ups in women with MS showed a reversal of NK cell changes postpartum. Moreover, high-dimensional profiling revealed a specific CD56bright subset with receptor expression related to cytotoxicity and cell activity (e.g., CD16+ NKp46high NKG2Dhigh NKG2Ahigh phenotype) that may drive the expansion of CD56bright NK cells during pregnancy in MS. Our data confirm that pregnancy promotes pronounced shifts of NK cells toward the regulatory CD56bright population. Although exploratory results on in-depth CD56bright phenotype need to be confirmed in larger studies, our findings suggest an increased regulatory NK activity, thereby potentially contributing to disease amelioration of MS during pregnancy.


Asunto(s)
Esclerosis Múltiple , Antígeno CD56/metabolismo , Estudios de Cohortes , Femenino , Humanos , Células Asesinas Naturales/metabolismo , Esclerosis Múltiple/metabolismo , Fenotipo , Embarazo
12.
Cell Death Dis ; 11(7): 560, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32703931

RESUMEN

Fetal growth restriction (FGR) is the most common pregnancy complication in developed countries. Pregnancies affected by FGR, frequently concur with complications and high risk of neonatal morbidity and mortality. To date, no approved treatment is available for pregnant women affected with FGR. The objective of this study was to investigate the contribution of galectin-3 (gal-3), a ß-galactoside binding protein involved in pregnancy, placental function and fetal growth. We demonstrated that lack of gal-3 during mouse pregnancy leads to placental dysfunction and drives FGR in the absence of a maternal preeclampsia syndrome. Analysis of gal-3 deficient dams revealed placental inflammation and malperfusion, as well as uterine natural killer cell infiltration with aberrant activation. Our results also show that FGR is associated with a failure to increase maternal circulating gal-3 levels during the second and third trimester in human pregnancies. Placentas from human pregnancies affected by FGR displayed lower gal-3 expression, which correlated with placental dysfunction. These data highlight the importance of gal-3 in the promotion of proper placental function, as its absence leads to placental disease and subsequent FGR.


Asunto(s)
Retardo del Crecimiento Fetal/metabolismo , Galectina 3/deficiencia , Galectina 3/metabolismo , Insuficiencia Placentaria/metabolismo , Animales , Femenino , Desarrollo Fetal , Humanos , Masculino , Ratones Endogámicos C57BL , Placentación , Embarazo , Factores de Riesgo
13.
Gastroenterology ; 159(4): 1417-1430.e3, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32585307

RESUMEN

BACKGROUND & AIMS: Unregulated activity of interleukin (IL) 22 promotes intestinal tumorigenesis in mice. IL22 binds the antagonist IL22 subunit alpha 2 (IL22RA2, also called IL22BP). We studied whether alterations in IL22BP contribute to colorectal carcinogenesis in humans and mice. METHODS: We obtained tumor and nontumor tissues from patients with colorectal cancer (CRC) and measured levels of cytokines by quantitative polymerase chain reaction, flow cytometry, and immunohistochemistry. We measured levels of Il22bp messenger RNA in colon tissues from wild-type, Tnf-/-, Lta-/-, and Ltb-/- mice. Mice were given azoxymethane and dextran sodium sulfate to induce colitis and associated cancer or intracecal injections of MC38 tumor cells. Some mice were given inhibitors of lymphotoxin beta receptor (LTBR). Intestine tissues were analyzed by single-cell sequencing to identify cell sources of lymphotoxin. We performed immunohistochemistry analysis of colon tissue microarrays from patients with CRC (1475 tissue cores, contained tumor and nontumor tissues) and correlated levels of IL22BP with patient survival times. RESULTS: Levels of IL22BP were decreased in human colorectal tumors, compared with nontumor tissues, and correlated with levels of lymphotoxin. LTBR signaling was required for expression of IL22BP in colon tissues of mice. Wild-type mice given LTBR inhibitors had an increased tumor burden in both models, but LTBR inhibitors did not increase tumor growth in Il22bp-/- mice. Lymphotoxin directly induced expression of IL22BP in cultured human monocyte-derived dendritic cells via activation of nuclear factor κB. Reduced levels of IL22BP in colorectal tumor tissues were associated with shorter survival times of patients with CRC. CONCLUSIONS: Lymphotoxin signaling regulates expression of IL22BP in colon; levels of IL22BP are reduced in human colorectal tumors, associated with shorter survival times. LTBR signaling regulates expression of IL22BP in colon tumors in mice and cultured human dendritic cells. Patients with colorectal tumors that express low levels of IL22BP might benefit from treatment with an IL22 antagonist.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Linfotoxina-alfa/metabolismo , Receptores de Interleucina/metabolismo , Anciano , Animales , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , ARN Mensajero/metabolismo , Receptores de Interleucina/genética , Tasa de Supervivencia
14.
J Allergy Clin Immunol ; 145(6): 1641-1654, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32305348

RESUMEN

BACKGROUND: Prenatal challenges such as maternal stress perception increase the risk and severity of asthma during childhood. However, insights into the trajectories and targets underlying the pathogenesis of prenatally triggered asthma are largely unknown. The developing lung and immune system may constitute such targets. OBJECTIVE: Here we have aimed to identify the differential sex-specific effects of prenatal challenges on lung function, immune response, and asthma severity in mice. METHODS: We generated bone marrow chimeric (BMC) mice harboring either prenatally stress-exposed lungs or a prenatally stress-exposed immune (hematopoietic) system and induced allergic asthma via ovalbumin. Next-generation sequencing (RNA sequencing) of lungs and assessment of airway epithelial barrier function in ovalbumin-sensitized control and prenatally stressed offspring was also performed. RESULTS: Profoundly enhanced airway hyperresponsiveness, inflammation, and fibrosis were exclusively present in female BMC mice with prenatally stress-exposed lungs. These effects were significantly perpetuated if both the lungs and the immune system had been exposed to prenatal stress. A prenatally stress-exposed immune system alone did not suffice to increase the severity of these asthma features. RNA sequencing analysis of lungs from prenatally stressed, non-BMC, ovalbumin-sensitized females unveiled a deregulated expression of genes involved in asthma pathogenesis, tissue remodeling, and tight junction formation. It was also possible to independently confirm a tight junction disruption. In line with this, we identified an altered perinatal and/or postnatal expression of genes involved in lung development along with an impaired alveolarization in female prenatally stressed mice. CONCLUSION: Here we have shown that the fetal origin of asthma is orchestrated by a disrupted airway epithelium and further perpetuated by a predisposed immune system.


Asunto(s)
Asma/inmunología , Pulmón/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Mucosa Respiratoria/inmunología , Animales , Médula Ósea/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Inmunidad/inmunología , Inflamación/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ovalbúmina/inmunología , Embarazo , Hipersensibilidad Respiratoria/inmunología , Uniones Estrechas/inmunología
15.
Cell Rep ; 29(4): 810-815.e4, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31644905

RESUMEN

Identifying T cell clones associated with human autoimmunity has remained challenging. Intriguingly, many autoimmune diseases, including multiple sclerosis (MS), show strongly diminished activity during pregnancy, providing a unique research paradigm to explore dynamics of immune repertoire changes during active and inactive disease. Here, we characterize immunomodulation at the single-clone level by sequencing the T cell repertoire in healthy women and female MS patients over the course of pregnancy. Clonality is significantly reduced from the first to third trimester in MS patients, indicating that the T cell repertoire becomes less dominated by expanded clones. However, only a few T cell clones are substantially modulated during pregnancy in each patient. Moreover, relapse-associated T cell clones identified in an individual patient contract during pregnancy and expand during a postpartum relapse. Our data provide evidence that profiling the T cell repertoire during pregnancy could serve as a tool to discover and track "private" T cell clones associated with disease activity in autoimmunity.


Asunto(s)
Esclerosis Múltiple/sangre , Complicaciones del Embarazo/sangre , Linfocitos T/inmunología , Adulto , Biomarcadores/sangre , Femenino , Humanos , Inmunofenotipificación , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/inmunología , Embarazo , Complicaciones del Embarazo/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/clasificación
16.
Am J Physiol Endocrinol Metab ; 317(1): E109-E120, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30990748

RESUMEN

Antenatal stress increases the prevalence of diseases in later life, which shows a strong sex-specific effect. However, the underlying mechanisms remain unknown. Maternal glucocorticoids can be elevated by stress and are potential candidates to mediate the effects of stress on the offspring sex-specifically. A comprehensive evaluation of dynamic maternal and placental mechanisms modulating fetal glucocorticoid exposure upon maternal stress was long overdue. Here, we addressed this gap in knowledge by investigating sex-specific responses to midgestational stress in mice. We observed increased levels of maternal corticosterone, the main glucocorticoid in rodents, along with higher corticosteroid-binding globulin levels at midgestation in C57Bl/6 dams exposed to sound stress. This resulted in elevated corticosterone in female fetuses, whereas male offspring were unaffected. We identified that increased placental expression of the glucocorticoid-inactivating enzyme 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2; Hsd11b2 gene) and ATP-binding cassette transporters, which mediate glucocorticoid efflux toward maternal circulation, protect male offspring from maternal glucocorticoid surges. We generated mice with an Hsd11b2 placental-specific disruption (Hsd11b2PKO) and observed moderately elevated corticosterone levels in offspring, along with increased body weight. Subsequently, we assessed downstream glucocorticoid receptors and observed a sex-specific differential modulation of placental Tsc22d3 expression, which encodes the glucocorticoid-induced leucine zipper protein in response to stress. Taken together, our observations highlight the existence of unique and well-orchestrated mechanisms that control glucocorticoid transfer, exposure, and metabolism in the mouse placenta, pinpointing toward the existence of sex-specific fetal glucocorticoid exposure windows during gestation in mice.


Asunto(s)
Feto/metabolismo , Glucocorticoides/metabolismo , Placenta/metabolismo , Caracteres Sexuales , Estrés Psicológico/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/genética , Animales , Aromatasa/genética , Corticosterona/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Complicaciones del Embarazo/metabolismo , Complicaciones del Embarazo/psicología , Receptores de Glucocorticoides/metabolismo , Estrés Psicológico/genética
17.
Sci Rep ; 8(1): 14823, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30287927

RESUMEN

Mouse models are important and versatile tools to study mechanisms and novel therapies of human disease in vivo. Both, the number and the complexity of murine models are constantly increasing and modification of genes of interest as well as any exogenous challenge may lead to unanticipated biological effects. Laboratory diagnostics of blood samples provide a comprehensive and rapid screening for multiple organ function and are fundamental to detect human disease. Here, we adapt an array of laboratory medicine-based tests commonly used in humans to establish a platform for standardized, multi-parametric, and quality-controlled diagnostics of murine blood samples. We determined sex-dependent reference intervals of 51 commonly used laboratory medicine tests for samples obtained from the C57BL/6J mouse strain. As a proof of principle, we applied these diagnostic tests in a mouse cytomegalovirus (MCMV) infection model to screen for organ damage. Consistent with histopathological findings, plasma concentrations of liver-specific enzymes were elevated, supporting the diagnosis of a virus-induced hepatitis. Plasma activities of aminotransferases correlated with viral loads in livers at various days after MCMV infection and discriminated infected from non-infected animals. This study provides murine blood reference intervals of common laboratory medicine parameters and illustrates the use of these tests for diagnosis of infectious disease in experimental animals.


Asunto(s)
Análisis Químico de la Sangre/métodos , ADN Viral/sangre , Pruebas Diagnósticas de Rutina/métodos , Hepatitis Viral Animal/diagnóstico , Infecciones por Herpesviridae/veterinaria , Muromegalovirus/aislamiento & purificación , Enfermedades de los Roedores/diagnóstico , Animales , Hepatitis Viral Animal/virología , Infecciones por Herpesviridae/diagnóstico , Infecciones por Herpesviridae/virología , Pruebas de Función Hepática , Ratones Endogámicos C57BL , Enfermedades de los Roedores/virología , Transaminasas/sangre
18.
Front Immunol ; 9: 2186, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319639

RESUMEN

Milestones of brain development in mammals are completed before birth, which provide the prerequisite for cognitive and intellectual performances of the offspring. Prenatal challenges, such as maternal stress experience or infections, have been linked to impaired cognitive development, poor intellectual performances as well as neurodevelopmental and psychiatric disorders in the offspring later in life. Fetal microglial cells may be the target of such challenges and could be functionally modified by maternal markers. Maternal markers can cross the placenta and reach the fetus, a phenomenon commonly referred to as "vertical transfer." These maternal markers include hormones, such as glucocorticoids, and also maternal immune cells and cytokines, all of which can be altered in response to prenatal challenges. Whilst it is difficult to discriminate between the maternal or fetal origin of glucocorticoids and cytokines in the offspring, immune cells of maternal origin-although low in frequency-can be clearly set apart from offspring's cells in the fetal and adult brain. To date, insights into the functional role of these cells are limited, but it is emergingly recognized that these maternal microchimeric cells may affect fetal brain development, as well as post-natal cognitive performances and behavior. Moreover, the inheritance of vertically transferred cells across generations has been proposed, yielding to the presence of a microchiome in individuals. Hence, it will be one of the scientific challenges in the field of neuroimmunology to identify the functional role of maternal microchimeric cells as well as the brain microchiome. Maternal microchimeric cells, along with hormones and cytokines, may induce epigenetic changes in the fetal brain. Recent data underpin that brain development in response to prenatal stress challenges can be altered across several generations, independent of a genetic predisposition, supporting an epigenetic inheritance. We here discuss how fetal brain development and offspring's cognitive functions later in life is modulated in the turnstile of prenatal challenges by introducing novel and recently emerging pathway, involving maternal hormones and immune markers.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Desarrollo Fetal/inmunología , Intercambio Materno-Fetal/inmunología , Complicaciones del Embarazo/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Animales , Encéfalo/inmunología , Encéfalo/metabolismo , Niño , Desarrollo Infantil/fisiología , Cognición/fisiología , Citocinas/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Feto/embriología , Feto/inmunología , Feto/metabolismo , Glucocorticoides/inmunología , Glucocorticoides/metabolismo , Humanos , Trastornos Mentales/inmunología , Ratones , Placenta/metabolismo , Embarazo , Complicaciones del Embarazo/psicología , Estrés Psicológico/inmunología , Estrés Psicológico/psicología
19.
Front Immunol ; 9: 291, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29515587

RESUMEN

While a link between inflammation and the development of neuropsychiatric disorders, including major depressive disorder (MDD) is supported by a growing body of evidence, little is known about the contribution of aberrant adaptive immunity in this context. Here, we conducted in-depth characterization of T cell phenotype and T cell receptor (TCR) repertoire in MDD. For this cross-sectional case-control study, we recruited antidepressant-free patients with MDD without any somatic or psychiatric comorbidities (n = 20), who were individually matched for sex, age, body mass index, and smoking status to a non-depressed control subject (n = 20). T cell phenotype and repertoire were interrogated using a combination of flow cytometry, gene expression analysis, and next generation sequencing. T cells from MDD patients showed significantly lower surface expression of the chemokine receptors CXCR3 and CCR6, which are known to be central to T cell differentiation and trafficking. In addition, we observed a shift within the CD4+ T cell compartment characterized by a higher frequency of CD4+CD25highCD127low/- cells and higher FOXP3 mRNA expression in purified CD4+ T cells obtained from patients with MDD. Finally, flow cytometry-based TCR Vß repertoire analysis indicated a less diverse CD4+ T cell repertoire in MDD, which was corroborated by next generation sequencing of the TCR ß chain CDR3 region. Overall, these results suggest that T cell phenotype and TCR utilization are skewed on several levels in patients with MDD. Our study identifies putative cellular and molecular signatures of dysregulated adaptive immunity and reinforces the notion that T cells are a pathophysiologically relevant cell population in this disorder.


Asunto(s)
Trastorno Depresivo Mayor/inmunología , Neuroinmunomodulación/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Adulto , Estudios de Casos y Controles , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Subgrupos de Linfocitos T/inmunología
20.
J Reprod Immunol ; 125: 100-105, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29241813

RESUMEN

Allergic asthma is an increasing health problem worldwide. Interestingly, prenatal challenges such as stress have been associated with an increased risk for asthma during childhood. The underlying pathogenesis of how prenatal stress increases the risk for asthma still remains unclear. Potential targets could be that the fetal immune ontogeny or fetal lung development are compromised by prenatal challenges. Here, we aimed to identify whether prenatal stress challenge affects fetal lung development in mice. C57BL/6 pregnant mice were challenged with sound stress and fetal lung development was assessed histologically. Whilst prenatal stress challenge did not profoundly affect lung development in male fetuses, it resulted in less extensive terminal sacs, surrounded by thicker mesenchymal tissue in female fetuses. Thus, prenatal stress disrupted fetal lung development sex-specifically. Interestingly, upon prenatal stress challenge, the airway hyperresponsiveness and eosinophilic inflammation- two hallmarks of asthma - were significantly increased in adult female offspring, whilst regulatory CD4+ T cells were reduced. These findings strongly underpin the sex-specific association between s challenged fetal development and a sex-specific altered severity of asthma in adult offspring. Our model now allows to identify maternal markers through which the risk for asthma and possible other diseases is vertically transferred before birth in response to challenges. Such identification then opens avenues for primary disease prevention.


Asunto(s)
Asma/diagnóstico , Desarrollo Fetal/inmunología , Pulmón/embriología , Efectos Tardíos de la Exposición Prenatal/diagnóstico , Estrés Psicológico/inmunología , Estimulación Acústica/efectos adversos , Animales , Asma/sangre , Asma/inmunología , Asma/patología , Linfocitos T CD4-Positivos/inmunología , Modelos Animales de Enfermedad , Femenino , Humanos , Pulmón/inmunología , Pulmón/patología , Masculino , Exposición Materna/efectos adversos , Ratones , Ratones Endogámicos C57BL , Embarazo , Efectos Tardíos de la Exposición Prenatal/sangre , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/patología , Índice de Severidad de la Enfermedad , Globulina de Unión a Hormona Sexual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA