Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Intervalo de año de publicación
1.
Neuroreport ; 35(8): 542-550, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38597273

RESUMEN

Wnt signaling plays an important role in adult brain function, and its dysregulation has been implicated in the loss of neuronal homeostasis. Despite the existence of many studies on the participation of the Wnt pathway in adult neurons, its regulation in astrocytes has been scarcely explored. Several reports point to the presence of Wnt ligands in astrocytes and their possible impact on neuronal plasticity or neuronal death. We aimed to analyze the effect of the neurotransmitter glutamate and the inflammatory cytokine TNFα on the mRNA and protein levels of the canonical Wnt agonist Wnt7a and the antagonist Dkk1 in cultured astrocytes. Primary astrocyte cultures from rat cerebral cortices were exposed to glutamate or TNFα. Wnt7a and Dkk1 expression was analyzed by RT-qPCR and its protein abundance and distribution was assessed by immunofluorescence. We found high basal expression and protein levels of Wnt7a and Dkk1 in unstimulated astrocytes and overproduction of Dkk1 mRNA induced by the two stimuli. These results reveal the astrocytic source of the canonical Wnt ligands Wnt7a and Dkk1, whose levels are differentially regulated by glutamate and TNFα. Astrocytes are a significant source of Wnt ligands, the production of which can be differentially regulated under excitatory or proinflammatory conditions, thereby impacting neuronal function.


Asunto(s)
Astrocitos , Ácido Glutámico , Péptidos y Proteínas de Señalización Intercelular , Proteínas Proto-Oncogénicas , Factor de Necrosis Tumoral alfa , Proteínas Wnt , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Animales , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ácido Glutámico/metabolismo , Proteínas Wnt/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Células Cultivadas , Ratas , ARN Mensajero/metabolismo , Ratas Wistar , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/citología
2.
CNS Neurol Disord Drug Targets ; 23(9): 1167-1175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38151851

RESUMEN

AIM: We aimed to investigate the mechanisms involved in the neurotoxic effects of NDGA on differentiated and undifferentiated human neuroblastoma cells (MSN), assessing cell viability, changes in the actin cytoskeleton, cell migration and the expression of the 5-LOX enzyme and the inhibitor of cell cycle progression p21WAF1/CIP1. BACKGROUND: High expression and activity of the lipoxygenase enzyme (LOX) have been detected in several tumors, including neuroblastoma samples, suggesting the use of LOX inhibitors as potential therapy molecules. Among these, the natural compound nordihydroguaiaretic acid (NDGA) has been extensively tested as an antiproliferative drug against diverse types of cancer cells. OBJECTIVE: In this study, we analyzed the toxic effect of NDGA on neuroblastoma cells at a dose that did not affect cell survival when they differentiated to a neuron-like phenotype and the potential mechanisms involved in the anticancer properties. METHODS: We exposed human neuroblastoma cells (MSN) to different concentrations of NDGA before and after a differentiation protocol with retinoic acid and nerve growth factor and analyzed cell viability, cell migration, actin cytoskeleton morphology and the levels of the cell cycle inhibitor p21WAF1/CIP1 and 5-LOX. RESULTS: We found that differentiated human neuroblastoma cells are more resistant to NDGA than undifferentiated cells. The toxic effects of NDGA were accompanied by reduced cell migration, changes in actin cytoskeleton morphology, induction of p21WAF1/CIP1 and decreased levels of the 5-LOX enzyme. CONCLUSION: This study provides new evidence regarding the potential use of NDGA to induce cell death in human neuroblastoma.


Asunto(s)
Diferenciación Celular , Movimiento Celular , Supervivencia Celular , Masoprocol , Neuroblastoma , Humanos , Neuroblastoma/patología , Masoprocol/farmacología , Supervivencia Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Araquidonato 5-Lipooxigenasa/metabolismo , Relación Dosis-Respuesta a Droga , Tretinoina/farmacología , Inhibidores de la Lipooxigenasa/farmacología , Antineoplásicos/farmacología
3.
J Nutr Biochem ; 120: 109415, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37437746

RESUMEN

Omega-3 fatty acids (w-3 FA) have anti-inflammatory effects and improve mitochondrial function. Nonetheless, little is known about their effect on mitochondrial bioenergetics of peripheral blood mononuclear cells (PBMCs) in individuals with obesity. Thus, this study aimed to determine the mitochondrial bioenergetics status and cell subset composition of PBMCs during obesity, before and after 1 month supplementation with w-3 FA. We performed a case-control study with twelve women with normal BMI (lean group) and 19 with grade 2 obesity (obese group), followed by a before-after prospective study where twelve subjects with obesity received a 1 month intervention with 5.25 g of w-3 FA (3.5 g eicosapentaenoic (EPA) and 1.75 g docosahexaenoic (DHA) acids), and obtained PBMCs from all participants. Mitochondrial bioenergetic markers, including basal and ATP-production associated respiration, proton leak, and nonmitochondrial respiration, were higher in PBMCs from the obese group vs. the lean group. The bioenergetic health index (BHI), a marker of mitochondrial function, was lower in the obese vs. the lean group. In addition, Th1, Th2, Th17, CD4+ Tregs, CD8+ Tregs, and Bregs, M1 monocytes and pDCreg cells were higher in PBMCs from the obese group vs. the lean group. The w-3 FA intervention improved mitochondrial function, mainly by decreasing nonmitochondrial respiration and increasing the reserve respiratory capacity and BHI. The intervention also reduced circulating pro-inflammatory and anti-inflammatory lymphocyte and monocytes subsets in individuals with obesity. The mitochondrial dysfunction of PBMCs and the higher proportion of peripheral pro-inflammatory and anti-inflammatory immune cells in subjects with obesity, improved with 1 month supplementation with EPA and DHA.


Asunto(s)
Ácidos Grasos Omega-3 , Leucocitos Mononucleares , Humanos , Femenino , Estudios de Casos y Controles , Estudios Prospectivos , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Obesidad/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Mitocondrias , Suplementos Dietéticos , Ácido Eicosapentaenoico/farmacología , Ácido Eicosapentaenoico/uso terapéutico , Ácidos Grasos
4.
Front Nutr ; 10: 1156995, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215211

RESUMEN

Background: Obesity is complicated by low-grade chronic inflammation characterised by increases in inflammatory proteins and cells in peripheral blood. It has been known that omega-3 fatty acids (FA) like eicosapentaenoic (EPA) and docosahexaenoic (DHA) could modulate the inflammatory process and improve metabolic markers. Objective: This study aimed to determine the effect of high-dose omega-3 FA on metabolic and inflammatory markers among patients with obesity and healthy volunteers. Methods: This prospective study included 12 women with obesity (body mass index [BMI] ≥ 35.0 kg/m2) and 12 healthy women (BMI < 24.0 kg/m2) who were supplemented with a dose of 4.8 g/day (3.2 g EPA plus 1.6 g DHA) for 3 months followed by no treatment for 1 month. Plasma metabolic and inflammatory markers and levels of mRNA transcripts of CD4+ T lymphocyte subsets were determined monthly. Results: None of the participants exhibited changes in weight or body composition after study completion. EPA and DHA supplementation improved metabolic (insulin, Homeostatic Model Assessment of Insulin Resistance [HOMA-IR], triglyceride [TG]/ high-density lipoprotein [HDL] ratio, TG, and arachidonic acid [AA]/EPA ratio) and tumor necrosis factor-alpha (TNF-α). Moreover, the levels of mRNA transcripts of T CD4+ lymphocyte subsets (TBX21, IFNG, GATA-3, interleukin [IL]-4, FOXP3, IL-10 IL-6, and TNF-α), were down-regulated during the intervention phase. After 1 month without supplementation, only insulin, HOMA-IR and the mRNA transcripts remained low, whereas all other markers returned to their levels before supplementation. Conclusion: Supplementation with high-dose omega-3 FAs could modulate metabolism and inflammation in patients with obesity without weight loss or changes in body composition. However, these modulatory effects were ephemeral and with clear differential effects: short-duration on metabolism and long-lasting on inflammation.

5.
Endocrinol Diabetes Metab ; 6(1): e386, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36321333

RESUMEN

INTRODUCTION: Saturated fatty acids (FAs) are the main component of high-fat diets (HFDs), and high consumption has been associated with the development of insulin resistance, endoplasmic reticulum stress and mitochondrial dysfunction in neuronal cells. In particular, the reduction in neuronal insulin signaling seems to underlie the development of cognitive impairments and has been considered a risk factor for Alzheimer's disease (AD). METHODS: This review summarized and critically analyzed the research that has impacted the field of saturated FA metabolism in neurons. RESULTS: We reviewed the mechanisms for free FA transport from the systemic circulation to the brain and how they impact neuronal metabolism. Finally, we focused on the molecular and the physiopathological consequences of brain exposure to the most abundant FA in the HFD, palmitic acid (PA). CONCLUSION: Understanding the mechanisms that lead to metabolic alterations in neurons induced by saturated FAs could help to develop several strategies for the prevention and treatment of cognitive impairment associated with insulin resistance, metabolic syndrome, or type II diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Ácidos Grasos/efectos adversos , Ácidos Grasos/metabolismo , Resistencia a la Insulina/fisiología , Metabolismo Energético , Encéfalo/metabolismo , Neuronas/metabolismo
6.
Exp Gerontol ; 165: 111854, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35642846

RESUMEN

Wnt signaling plays an important role in adult brain function, and its dysregulation has been implicated in functional decline during aging as well as in some neurodegenerative diseases, such as Alzheimer's disease. In the adult brain, the Wnt pathway contributes to synapse formation and maintenance, axonal remodeling, and dendrite outgrowth. Recent findings indicate a downregulation of Wnt signaling in the aged brain in different models, but it has not been associated with changes in the number and structure of central synapses. The expression and distribution of Wnt components in different brain regions may vary with age, which may have important implications for brain homeostasis manifesting as different behavioral alterations. Thus, in the present work, we analyzed the expression levels and protein content of different molecules of the Wnt pathway in young and aged rats in the cerebral cortex, hippocampus and cerebellum and discussed their correlation with changes in synaptic number and morphology.


Asunto(s)
Enfermedad de Alzheimer , Vía de Señalización Wnt , Enfermedad de Alzheimer/metabolismo , Animales , Hipocampo/metabolismo , Ratas , Sinapsis , Vía de Señalización Wnt/fisiología
8.
FASEB J ; 35(7): e21712, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34110637

RESUMEN

Palmitic acid (PA) is a saturated fatty acid whose high consumption has been largely associated with the development of different metabolic alterations, such as insulin resistance, metabolic syndrome, and type 2 diabetes. Particularly in the brain, insulin signaling disruption has been linked to cognitive decline and is considered a risk factor for Alzheimer's disease. Cumulative evidence has demonstrated the participation of PA in the molecular cascade underlying cellular insulin resistance in peripheral tissues, but its role in the development of neuronal insulin resistance and the mechanisms involved are not fully understood. It has generally been accepted that the brain does not utilize fatty acids as a primary energy source, but recent evidence shows that neurons possess the machinery for fatty acid ß-oxidation. However, it is still unclear under what conditions neurons use fatty acids as energy substrates and the implications of their oxidative metabolism in modifying insulin-stimulated effects. In the present work, we have found that neurons differentiated from human neuroblastoma MSN exposed to high but nontoxic concentrations of PA generate ATP through mitochondrial metabolism, which is associated with an increase in the cytosolic Ca2+ and diminished insulin signaling in neurons. These findings reveal a novel mechanism by which saturated fatty acids produce Ca2+ entry and insulin resistance that may play a causal role in increasing neuronal vulnerability associated with metabolic diseases.


Asunto(s)
Calcio/metabolismo , Metabolismo Energético/efectos de los fármacos , Resistencia a la Insulina/fisiología , Neuronas/efectos de los fármacos , Ácido Palmítico/farmacología , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Citosol/efectos de los fármacos , Citosol/metabolismo , Ácidos Grasos/farmacología , Humanos , Insulina/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuroblastoma/metabolismo , Neuronas/metabolismo , Transducción de Señal/efectos de los fármacos
9.
Cell Mol Neurobiol ; 41(3): 537-549, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32435957

RESUMEN

Entorhinal cortex lesions have been established as a model for hippocampal deafferentation and have provided valuable information about the mechanisms of synapse reorganization and plasticity. Although several molecules have been proposed to contribute to these processes, the role of Wnt signaling components has not been explored, despite the critical roles that Wnt molecules play in the formation and maintenance of neuronal and synaptic structure and function in the adult brain. In this work, we assessed the reorganization process of the dentate gyrus (DG) at 1, 3, 7, and 30 days after an excitotoxic lesion in layer II of the entorhinal cortex. We found that cholinergic fibers sprouted into the outer molecular layer of the DG and revealed an increase of the developmental regulated MAP2C isoform 7 days after lesion. These structural changes were accompanied by the differential regulation of the Wnt signaling components Wnt7a, Wnt5a, Dkk1, and Sfrp1 over time. The progressive increase in the downstream Wnt-regulated elements, active-ß-catenin, and cyclin D1 suggested the activation of the canonical Wnt pathway beginning on day 7 after lesion, which correlates with the structural adaptations observed in the DG. These findings suggest the important role of Wnt signaling in the reorganization processes after brain lesion and indicate the modulation of this pathway as an interesting target for neuronal tissue regeneration.


Asunto(s)
Corteza Entorrinal/patología , Hipocampo/metabolismo , Vía de Señalización Wnt , Vías Aferentes/metabolismo , Animales , Colina/metabolismo , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Fibras Nerviosas/metabolismo , Isoformas de Proteínas/metabolismo , Ratas Wistar , Proteínas Wnt/metabolismo
10.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33227902

RESUMEN

Synaptic aging has been associated with neuronal circuit dysfunction and cognitive decline. Reduced mitochondrial function may be an early event that compromises synaptic integrity and neurotransmission in vulnerable brain regions during physiological and pathological aging. Thus, we aimed to measure mitochondrial function in synapses from three brain regions at two different ages in the 3xTg-AD mouse model and in wild mice. We found that aging is the main factor associated with the decline in synaptic mitochondrial function, particularly in synapses isolated from the cerebellum. Accumulation of toxic compounds, such as tau and Aß, that occurred in the 3xTg-AD mouse model seemed to participate in the worsening of this decline in the hippocampus. The changes in synaptic bioenergetics were also associated with increased activation of the mitochondrial fission protein Drp1. These results suggest the presence of altered mechanisms of synaptic mitochondrial dynamics and their quality control during aging and in the 3xTg-AD mouse model; they also point to bioenergetic restoration as a useful therapeutic strategy to preserve synaptic function during aging and at the early stages of Alzheimer's disease (AD).


Asunto(s)
Envejecimiento/genética , Disfunción Cognitiva/genética , Dinaminas/genética , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Envejecimiento/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Cerebelo/metabolismo , Cerebelo/fisiopatología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Modelos Animales de Enfermedad , Dinaminas/metabolismo , Femenino , Regulación de la Expresión Génica , Hipocampo/metabolismo , Hipocampo/fisiopatología , Humanos , Potencial de la Membrana Mitocondrial/genética , Ratones , Ratones Transgénicos , Mitocondrias/patología , Neuronas/metabolismo , Neuronas/patología , Especificidad de Órganos , Sinapsis/metabolismo , Sinapsis/patología , Sinaptosomas/metabolismo , Sinaptosomas/patología , Proteínas tau/genética , Proteínas tau/metabolismo
11.
Neurochem Int ; 129: 104499, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31271766

RESUMEN

Cytochrome P450 (CYP) epoxygenases and their metabolic products, epoxyeicosatrienoic acids (EETs), have been proposed as important therapeutic targets in the brain. However, CYP expression can be modified by the presence of diverse pro-inflammatory cytokines and the subsequent activation of the NF-κB pathway. It has been indicated that CYP epoxygenases are down-regulated by inflammation in the heart, kidney and liver. However, up to this point, there has been no evidence regarding regulation of CYP epoxygenases during inflammation in the brain. Therefore, in order to explore the effects of inflammation and NF-κB activation in CYP2J3 and CYP2C11 regulation, rat primary astrocytes cultures were treated with LPS with and without IMD-0354 (selective NF-κB inhibitor). Cyp2j3 and Cyp2c11 mRNA expression was determined by qRT-PCR; protein expression was determined by immunofluorescence and by Western Blot and total epoxygenase activity was determined by the quantification of EETs by ELISA. NF-κB binding sites in Cyp2j3 and Cyp2c11 promoter regions were bioinformatically predicted and Electrophoretic Mobility Shift Assays (EMSA) were performed to determine if each hypothetic response element was able to bind NF-κB complexes. Results shown that LPS treatment is able to down-regulate astrocyte CYP2J3 and CYP2C11 mRNA, protein and activity. Additionally, we have identified NK-κB as the transcription factor involved in this regulation.


Asunto(s)
Astrocitos/metabolismo , Regulación de la Expresión Génica , Inflamación/metabolismo , FN-kappa B/fisiología , Animales , Hidrocarburo de Aril Hidroxilasas , Benzamidas/farmacología , Células Cultivadas , Corteza Cerebral/citología , Sistema Enzimático del Citocromo P-450 , Familia 2 del Citocromo P450 , Regulación hacia Abajo/efectos de los fármacos , Eicosanoides/biosíntesis , Endotoxinas/farmacología , Inflamación/inducido químicamente , Inflamación/genética , Masculino , FN-kappa B/antagonistas & inhibidores , Cultivo Primario de Células , Regiones Promotoras Genéticas , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Wistar , Esteroide 16-alfa-Hidroxilasa , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética
12.
Neurochem Res ; 44(7): 1745-1754, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31073968

RESUMEN

Increased levels of circulating fatty acids, such as palmitic acid (PA), are associated with the development of obesity, insulin resistance, type-2 diabetes and metabolic syndrome. Furthermore, these diseases are linked to an increased risk of cancer, cardiovascular diseases, mild cognitive impairment and even Alzheimer's disease (AD). However, the precise actions of elevated PA levels on neurons and their association with neuronal metabolic disruption that leads to the expression of pathological markers of AD, such as the overproduction and accumulation of the amyloid-ß peptide, represent an area of intense investigation. A possible molecular mechanism involved in the effects of PA may be through dysfunction of the NAD+ sensor enzyme, SIRT1. Therefore, the aim of the present study was to analyze the relationship between the effects of PA metabolism on the function of SIRT1 and the upregulation of BACE1 in cultured hippocampal neurons. PA reduced the total amount of NAD+ in neurons that caused an increase in p65 K310 acetylation due to inhibition of SIRT1 activity and low protein content. Furthermore, BACE1 protein and its activity were increased, and BACE1 was relocated in neurites after PA exposure.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Hipocampo/metabolismo , NAD/metabolismo , Neuronas/metabolismo , Ácido Palmítico/farmacología , Sirtuina 1/metabolismo , Acetilación , Animales , Ratas Wistar , Factor de Transcripción ReIA/química , Factor de Transcripción ReIA/metabolismo , Regulación hacia Arriba
13.
Anat Rec (Hoboken) ; 302(9): 1647-1657, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30635974

RESUMEN

In the adult hippocampus of many mammals, a particular microenvironment in the neurogenic niche regulates the proliferation, self-renewal, and differentiation of neuronal stem cells. In this proliferative niche, a variety of molecules provide a finely regulated molecular signaling that controls stem cell properties. During development, Wnt signaling has been implicated in cell fate determination and proliferation, in the establishment of cell polarity, as well as a cue for axonal growth and dendrite orientation. In the adult brain, this pathway also participates in the stem cell self-renewal and neuronal differentiation. However, the effects of the chronic Wnt signaling modulation in the adult hippocampus, through the infusion of Wnt7a, Wnt5a, and Dkk-1, on the rate of neurogenesis and on the induction of neurite arborization have not been studied. In this study, we show that Wnt7a and Wn5a further increased the rate of newly generated neurons. However, Wnt5a exerted additional effects by promoting neurite growth and neurite misorientation in the dentate gyrus of adult rats. The chronic exposure to Dkk-1 also generated aberrant location of growing neurites. These results suggest that the interplay of canonical and non-canonical Wnt ligands participates in neuronal stem cell proliferation and in the establishment of proper neurite maturation. Anat Rec, 302:1647-1657, 2019. © 2019 American Association for Anatomy.


Asunto(s)
Hipocampo/citología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neurogénesis , Neuronas/citología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Wnt/metabolismo , Proteína Wnt-5a/metabolismo , Animales , Diferenciación Celular , Hipocampo/metabolismo , Masculino , Neuronas/metabolismo , Ratas , Ratas Wistar
14.
Int J Mol Sci ; 19(12)2018 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-30477115

RESUMEN

Phosphoinositide 3-kinase (PI3K) signaling contributes to a variety of processes, mediating many aspects of cellular function, including nutrient uptake, anabolic reactions, cell growth, proliferation, and survival. Less is known regarding its critical role in neuronal physiology, neuronal metabolism, tissue homeostasis, and the control of gene expression in the central nervous system in healthy and diseased states. The aim of the present work is to review cumulative evidence regarding the participation of PI3K pathways in neuronal function, focusing on their role in neuronal metabolism and transcriptional regulation of genes involved in neuronal maintenance and plasticity or on the expression of pathological hallmarks associated with neurodegeneration.


Asunto(s)
Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Animales , Autofagia , Epigénesis Genética , Regulación de la Expresión Génica , Humanos , Inflamación/genética , Inflamación/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transmisión Sináptica
15.
Rev Med Inst Mex Seguro Soc ; 56(Suppl 1): S18-S25, 2018.
Artículo en Español | MEDLINE | ID: mdl-29624358

RESUMEN

Background: Recent evidence suggests that early neurodegenerative events associated with Alzheimer's disease (AD) probably begin in the synaptic terminal, where it has been reported a large accumulation of ß-amyloid protein (Aß), one of the main factors described in the development of AD. We analyzed the influence of energy metabolism on the toxic effects of Aß during aging on synaptosomes from neocortex and hippocampus of rats exposed to inhibitors of glycolytic and mitochondrial metabolism and we evaluated the protective effects of some antioxidant compounds. Methods: Synaptosomes were obtained by differential centrifugation in sucrose gradients and their redox activity was determined with the MTT assay. Results: The mitochondrial activity of synaptosomes from young rats was not altered by the presence of Aß; the ones obtained from old rats showed an increase in susceptibility to Aß; this activity was greater in the synaptic terminals of the hippocampus. Conclusions: These results provide experimental support for the hypothesis that certain risk factors, such as energy metabolism dysfunction or the aging process itself, may increase vulnerability to Aß. Hippocampal region is more susceptible to Aß and its effect increases with age in relation to the neocortex, which would agree with the damage gradient reported in the AD.


Introducción: evidencia reciente sugiere que eventos neurodegenerativos tempranos asociados con la enfermedad de Alzheimer (EA) probablemente se inicien en la terminal sináptica, en donde se observa una gran acumulación de la proteína ß-amiloide (Aß), uno de los factores involucrados en el desarrollo de la EA. Estudiamos la influencia del metabolismo energético en los efectos tóxicos de la Aß en el envejecimiento en sinaptosomas de neocorteza e hipocampo de ratas expuestas a inhibidores del metabolismo glucolítico y mitocondrial, y evaluamos los efectos protectores de algunos antioxidantes. Métodos: los sinaptosomas se obtuvieron por centrifugación diferencial en gradientes de sacarosa y su actividad óxido-reductura se determinó con la técnica de MTT. Resultados: la actividad mitocondrial de los sinaptosomas de ratas jóvenes no se alteró por la presencia de la Aß; los de ratas viejas mostraron un aumento en la susceptibilidad a la Aß, el efecto fue mayor en las terminales sinápticas del hipocampo. Conclusiones: los resultados sustentan la hipótesis de que ciertos factores de riesgo, como las disfunciones del metabolismo energético o el proceso de envejecimiento, pueden incrementar la vulnerabilidad a la Aß y su efecto se incrementa con la edad en relación con la neocorteza, lo cual concordaría con el gradiente de daño reportado en la EA.


Asunto(s)
Envejecimiento/fisiología , Péptidos beta-Amiloides/toxicidad , Antioxidantes/metabolismo , Metabolismo Energético/fisiología , Hipocampo/metabolismo , Neocórtex/metabolismo , Sinaptosomas/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Biomarcadores/metabolismo , Oxidación-Reducción , Ratas , Ratas Wistar
16.
Brain Res Bull ; 139: 243-255, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29548910

RESUMEN

Wnt signaling plays an important role in the adult brain function and its dysregulation has been implicated in some neurodegenerative pathways. Despite the functional role of the Wnt signaling in adult neural circuits, there is currently no evidence regarding the relationships between exogenously Wnt signaling activation or inhibition and hippocampal structural changes in vivo. Thus, we analyzed the effect of the chronic infusion of Wnt agonists, Wnt7a and Wnt5a, and antagonist, Dkk-1, on different markers of plasticity such as neuronal MAP-2, Tau, synapse number and morphology, and behavioral changes. We observed that Wnt7a and Wnt5a increased the number of perforated synapses and the content of pre-and postsynaptic proteins associated with synapse assembly compared to control and Dkk-1 infusion. These two Wnt agonists also reduced anxiety-like behavior. Conversely, the canonical antagonist, Dkk-1, increased anxiety and inhibited spatial memory recall. Therefore, the present study elucidates the potential participation of Wnt signaling in the remodeling of hippocampal circuits underlying plasticity events in vivo, and provides evidence of the potential benefits of Wnt agonist infusion for the treatment of some neurodegenerative conditions.


Asunto(s)
Ansiedad/terapia , Hipocampo/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Memoria/efectos de los fármacos , Proteínas Wnt/uso terapéutico , Proteína Wnt-5a/uso terapéutico , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/ultraestructura , Humanos , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Neuroblastoma/patología , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/ultraestructura , Proteínas Wnt/ultraestructura , Proteína Wnt-5a/ultraestructura
17.
Neurochem Int ; 110: 75-83, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28919254

RESUMEN

The high consumption of saturated lipids has been largely associated with the increasing prevalence of metabolic diseases. In particular, saturated fatty acids such as palmitic acid (PA) have been implicated in the development of insulin resistance in peripheral tissues. However, how neurons develop insulin resistance in response to lipid overload is not fully understood. Here, we used cultured rat cortical neurons and differentiated human neuroblastoma cells to demonstrate that PA blocks insulin-induced metabolic activation, inhibits the activation of the insulin/PI3K/Akt pathway and activates mTOR kinase downstream of Akt. Despite the fact that fatty acids are not normally used as a significant source of fuel by neural cells, we also found that short-term neuronal exposure to PA reduces the NAD+/NADH ratio, indicating that PA modifies the neuronal energy balance. Finally, inhibiting mitochondrial ROS production with mitoTEMPO prevented the deleterious effect of PA on insulin signaling. This work provides novel evidence of the mechanisms behind saturated fatty acid-induced insulin resistance and its metabolic consequences on neuronal cells.


Asunto(s)
Insulina/metabolismo , Ácido Palmítico/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular Tumoral , Células Cultivadas , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Humanos , Antagonistas de Insulina/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuroblastoma/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Ratas , Transducción de Señal
18.
Ageing Res Rev ; 37: 135-145, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28624530

RESUMEN

Wnt signaling is a highly conserved pathway that participates in multiple aspects of cellular function during development and in adults. In particular, this pathway has been implicated in cell fate determination, proliferation and cell polarity establishment. In the brain, it contributes to synapse formation, axonal remodeling, dendrite outgrowth, synaptic activity, neurogenesis and behavioral plasticity. The expression and distribution of Wnt components in different organs vary with age, which may have important implications for preserving tissue homeostasis. The dysregulation of Wnt signaling has been implicated in age-associated diseases, such as cancer and some neurodegenerative conditions. This is a relevant research topic, as an important research avenue for therapeutic targeting of the Wnt pathway in regenerative medicine has recently been opened. In this review, we discuss the recent findings on the regulation of Wnt components during aging, particularly in brain functioning, and the implications of Wnt signaling in age-related diseases.


Asunto(s)
Envejecimiento/metabolismo , Senescencia Celular , Vía de Señalización Wnt , Animales , Diferenciación Celular , Sistema Nervioso Central/metabolismo , Humanos , Neoplasias , Enfermedades Neurodegenerativas , Neurogénesis
19.
Cell Mol Neurobiol ; 37(7): 1311-1318, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28124209

RESUMEN

Amyloid-ß protein (Aß) neurotoxicity occurs along with the reorganization of the actin-cytoskeleton through the activation of the Rho GTPase pathway. In addition to the classical mode of action of the non-steroidal anti-inflammatory drugs (NSAIDs), indomethacin, and ibuprofen have Rho-inhibiting effects. In order to evaluate the role of the Rho GTPase pathway on Aß-induced neuronal death and on neuronal morphological modifications in the actin cytoskeleton, we explored the role of NSAIDS in human-differentiated neuroblastoma cells exposed to Aß. We found that Aß induced neurite retraction and promoted the formation of different actin-dependent structures such as stress fibers, filopodia, lamellipodia, and ruffles. In the presence of Aß, both NSAIDs prevented neurite collapse and formation of stress fibers without affecting the formation of filopodia and lamellipodia. Similar results were obtained when the downstream effector, Rho kinase inhibitor Y27632, was applied in the presence of Aß. These results demonstrate the potential benefits of the Rho-inhibiting NSAIDs in reducing Aß-induced effects on neuronal structural alterations.


Asunto(s)
Actinas/metabolismo , Péptidos beta-Amiloides/toxicidad , Antiinflamatorios no Esteroideos/farmacología , Citoesqueleto/enzimología , Fragmentos de Péptidos/toxicidad , Transducción de Señal/fisiología , Quinasas Asociadas a rho/fisiología , Línea Celular Tumoral , Citoesqueleto/efectos de los fármacos , Citoesqueleto/patología , Inhibidores Enzimáticos/farmacología , Humanos , Transducción de Señal/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores
20.
Diabetes Metab Res Rev ; 31(1): 1-13, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24464982

RESUMEN

A growing body of animal and epidemiological studies suggest that metabolic diseases such as obesity, insulin resistance, metabolic syndrome and type 2 diabetes mellitus are associated with the development of cognitive impairment, dementia and Alzheimer's disease, particularly in aging. Several lines of evidence suggest that insulin signalling dysfunction produces these metabolic alterations and underlie the development of these neurodegenerative diseases. In this article, we address normal insulin function in the synapse; we review and discuss the physiopathological hallmarks of synaptic insulin signalling dysfunction associated with metabolic alterations. Additionally, we describe and review the major animal models of obesity, insulin resistance, metabolic syndrome and type 2 diabetes mellitus. The comprehensive knowledge of the molecular mechanisms behind the association of metabolic alterations and cognitive impairment could facilitate the early detection of neurodegenerative diseases in patients with metabolic alterations, with treatment that focus on neuroprotection. It could also help in the development of metabolic-based therapies and drugs for using in dementia and Alzheimer's disease patients to alleviate their symptoms in a more efficient and comprehensive way.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Trastornos del Conocimiento/etiología , Hipocampo/metabolismo , Hipocampo/patología , Insulina/metabolismo , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/patología , Animales , Cognición/efectos de los fármacos , Cognición/fisiología , Trastornos del Conocimiento/epidemiología , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/patología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Humanos , Insulina/farmacología , Obesidad/complicaciones , Obesidad/epidemiología , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA