Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
bioRxiv ; 2023 Feb 14.
Article En | MEDLINE | ID: mdl-36824766

Chronic opioid exposure induces tolerance to the pain-relieving effects of opioids but sensitization to some other effects. While the occurrence of these adaptations is well-understood, the underlying cellular mechanisms are less clear. This study aimed to determine how chronic treatment with morphine, a prototypical opioid agonist, induced adaptations to subsequent morphine signaling in different subcellular contexts. Opioids acutely inhibit glutamatergic transmission from medial thalamic (MThal) inputs to the dorsomedial striatum (DMS) and anterior cingulate cortex (ACC) via activity at µ-opioid receptors (MORs). MORs are present in somatic and presynaptic compartments of MThal neurons terminating in both the DMS and ACC. We investigated the effects of chronic morphine treatment on subsequent morphine signaling at MThal-DMS synapses, MThal-ACC synapses, and MThal cell bodies in male and female mice. Surprisingly, chronic morphine treatment increased subsequent morphine inhibition of MThal-DMS synaptic transmission (morphine facilitation), but decreased subsequent morphine inhibition of transmission at MThal-ACC synapses (morphine tolerance) in a sex-specific manner; these adaptations were present in male but not female mice. Additionally, these adaptations were not observed in knockin mice expressing phosphorylation-deficient MORs, suggesting a role of MOR phosphorylation in mediating both facilitation and tolerance to morphine within this circuit. The results of this study suggest that the effects of chronic morphine exposure are not ubiquitous; rather adaptations in MOR function may be determined by multiple factors such as subcellular receptor distribution, influence of local circuitry and sex.

2.
Physiol Rep ; 8(9): e14428, 2020 05.
Article En | MEDLINE | ID: mdl-32358861

Members of the Rab3 gene family are considered central to membrane trafficking of synaptic vesicles at mammalian central excitatory synapses. Recent evidence, however, indicates that the Rab27B-GTPase, which is highly homologous to the Rab3 family, is also enriched on SV membranes and co-localize with Rab3A and Synaptotagmin at presynaptic terminals. While functional roles of Rab3A have been well-established, little functional information exists on the role of Rab27B in synaptic transmission. Here we report on functional effects of Rab27B at SC-CA1 and DG-MF hippocampal synapses. The data establish distinct functional actions of Rab27B and demonstrate functions of Rab27B that differ between SC-CA1 and DG-MF synapses. Rab27B knockout reduced frequency facilitation compared to wild-type (WT) controls at the DG/MF-CA3 synaptic region, while increasing facilitation at the SC-CA1 synaptic region. Remarkably, Rab27B KO resulted in a complete elimination of LTP at the MF-CA3 synapse with no effect at the SC-CA1 synapse. These actions are similar to those previously reported for Rab3A KO. Specificity of action on LTP to Rab27B was confirmed as LTP was rescued in response to lentiviral infection and expression of human Rab27B, but not to GFP, in the DG in the Rab27B KO mice. Notably, the effect of Rab27B KO on MF-CA3 LTP occurred in spite of continued expression of Rab3A in the Rab27B KO. Overall, the results provide a novel perspective in suggesting that Rab27B and Rab3A act synergistically, perhaps via sequential effector recruitment or signaling for presynaptic LTP expression in this hippocampal synaptic region.


Hippocampus/metabolism , Presynaptic Terminals/metabolism , Synapses/metabolism , Synaptic Transmission/physiology , rab GTP-Binding Proteins/physiology , Animals , Long-Term Potentiation/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , rab3A GTP-Binding Protein/metabolism
...