Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Environ Pollut ; 351: 123941, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38614427

Urbanization has numerous benefits to human society, but some aspects of urban environments, such as air pollution, can negatively affect human health. Two major air pollutants, particulate matter (PM) and polycyclic aromatic hydrocarbons (PAH), have been classified as carcinogens by the International Agency for Research on Cancer. Here, we answer two questions: (1) What are the carcinogenic effects of PM and PAH exposure? (2) How does carcinogenic risk vary across geographical regions? We performed a comprehensive literature search of peer-reviewed published studies examining the link between air pollution and human cancer rates. Focusing on studies published since 2014 when the last IARC monograph on air pollution was published, we converted the extracted data into relative risks and performed subgroup analyses. Exposure to PM2.5 (per 10 µg/m3) resulted in an 8.5% increase in cancer incidence when all cancer types were combined, and risk for individual cancer types (i.e. lung cancer and adenocarcinoma) was also elevated. PM2.5 was also associated with 2.5% higher mortality due to cancer when all types of cancer were combined, and for individual cancer types (i.e., lung and breast cancer). Exposure to PM2.5 and PM10 posed the greatest risk to lung cancer incidence and mortality in Europe (PM2.5 RR 2.15; PM10 RR 1.26); the risk in Asia and the Americas was also elevated. Exposure to PAH and benzo[a]pyrene significantly increased the pooled risk of cancer incidence (10.8% and 8.0% respectively) at the highest percentile of exposure concentration. Our meta-analyses of studies over the past decade shows that urban air pollution in the form of PM2.5, PM10, and PAH all elevate the incidence and mortality of cancer. We discuss the possible mechanisms of carcinogenesis of PM and PAH. These results support World Health Organization's conclusion that air pollution poses among the greatest health risks to humans living in cities.


Air Pollutants , Air Pollution , Carcinogens , Environmental Exposure , Neoplasms , Particulate Matter , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/toxicity , Humans , Neoplasms/chemically induced , Neoplasms/epidemiology , Environmental Exposure/statistics & numerical data , Air Pollution/statistics & numerical data , Carcinogens/toxicity
2.
Nat Ecol Evol ; 8(6): 1074-1086, 2024 Jun.
Article En | MEDLINE | ID: mdl-38641700

Increasing evidence suggests that urbanization is associated with higher mutation rates, which can affect the health and evolution of organisms that inhabit cities. Elevated pollution levels in urban areas can induce DNA damage, leading to de novo mutations. Studies on mutations induced by urban pollution are most prevalent in humans and microorganisms, whereas studies of non-human eukaryotes are rare, even though increased mutation rates have the potential to affect organisms and their populations in contemporary time. Our Perspective explores how higher mutation rates in urban environments could impact the fitness, ecology and evolution of populations. Most mutations will be neutral or deleterious, and higher mutation rates associated with elevated pollution in urban populations can increase the risk of cancer in humans and potentially other species. We highlight the potential for urban-driven increased deleterious mutational loads in some organisms, which could lead to a decline in population growth of a wide diversity of organisms. Although beneficial mutations are expected to be rare, we argue that higher mutation rates in urban areas could influence adaptive evolution, especially in organisms with short generation times. Finally, we explore avenues for future research to better understand the effects of urban-induced mutations on the fitness, ecology and evolution of city-dwelling organisms.


Biological Evolution , Cities , Mutation , Urbanization , Humans , Mutation Rate , Animals
...