Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
PLoS Pathog ; 20(3): e1012101, 2024 Mar.
Article En | MEDLINE | ID: mdl-38502642

Emerging and reemerging tick-borne virus infections caused by orthonairoviruses (family Nairoviridae), which are genetically distinct from Crimean-Congo hemorrhagic fever virus, have been recently reported in East Asia. Here, we have established a mouse infection model using type-I/II interferon receptor-knockout mice (AG129 mice) both for a better understanding of the pathogenesis of these infections and validation of antiviral agents using Yezo virus (YEZV), a novel orthonairovirus causing febrile illnesses associated with tick bites in Japan and China. YEZV-inoculated AG129 mice developed hepatitis with body weight loss and died by 6 days post infection. Blood biochemistry tests showed elevated liver enzyme levels, similar to YEZV-infected human patients. AG129 mice treated with favipiravir survived lethal YEZV infection, demonstrating the anti-YEZV effect of this drug. The present mouse model will help us better understand the pathogenicity of the emerging tick-borne orthonairoviruses and the development of specific antiviral agents for their treatment.


Nairovirus , Tick-Borne Diseases , Animals , Mice , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Disease Models, Animal , Mice, Knockout
2.
EBioMedicine ; 99: 104950, 2024 Jan.
Article En | MEDLINE | ID: mdl-38159532

BACKGROUND: Pulmonary infection with SARS-CoV-2 stimulates host immune responses and can also result in the progression of dysregulated and critical inflammation. Throughout the pandemic, the management and treatment of COVID-19 has been continuously updated with a range of antiviral drugs and immunomodulators. Monotherapy with oral antivirals has proven to be effective in the treatment of COVID-19. However, treatment should be initiated in the early stages of infection to ensure beneficial therapeutic outcomes, and there is still room for further consideration on therapeutic strategies using antivirals. METHODS: We studied the therapeutic effects of monotherapy with the oral antiviral ensitrelvir or the anti-inflammatory corticosteroid methylprednisolone and combination therapy with ensitrelvir and methylprednisolone in a delayed dosing model of hamsters infected with SARS-CoV-2. FINDINGS: Combination therapy with ensitrelvir and methylprednisolone improved respiratory conditions and reduced the development of pneumonia in hamsters even when the treatment was started after 2 days post-infection. The combination therapy led to a differential histological and transcriptomic pattern in comparison to either of the monotherapies, with reduced lung damage and down-regulation of expression of genes involved in the inflammatory response. Furthermore, we found that the combination treatment is effective in case of infection with either the highly pathogenic delta or circulating omicron variants. INTERPRETATION: Our results demonstrate the advantage of combination therapy with antiviral and corticosteroid drugs in COVID-19 treatment from the perspective of lung pathology and host inflammatory responses. FUNDING: Funding bodies are described in the Acknowledgments section.


COVID-19 , Humans , Animals , Cricetinae , COVID-19 Drug Treatment , Treatment Delay , SARS-CoV-2 , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Methylprednisolone/pharmacology , Methylprednisolone/therapeutic use , Adrenal Cortex Hormones , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
3.
Appl Microbiol Biotechnol ; 107(24): 7515-7529, 2023 Dec.
Article En | MEDLINE | ID: mdl-37831184

The most conserved fusion loop (FL) domain present in the flavivirus envelope protein has been reported as a dominant epitope for cross-reactive antibodies to mosquito-borne flaviviruses (MBFVs). As a result, establishing accurate serodiagnosis for MBFV infections has been difficult as anti-FL antibodies are induced by both natural infection and following vaccination. In this study, we modified the most conserved FL domain to overcome this cross-reactivity. We showed that the FL domain of lineage I insect-specific flavivirus (ISFV) has differences in antigenicity from those of MBFVs and lineage II ISFV and determined the key amino acid residues (G106, L107, or F108), which contribute to the antigenic difference. These mutations were subsequently introduced into subviral particles (SVPs) of dengue virus type 2 (DENV2), Zika virus (ZIKV), Japanese encephalitis virus (JEV), and West Nile virus (WNV). In indirect enzyme-linked immunosorbent assays (ELISAs), these SVP mutants when used as antigens reduced the binding of cross-reactive IgG and total Ig induced by infection of ZIKV, JEV, and WNV in mice and enabled the sensitive detection of virus-specific antibodies. Furthermore, immunization of ZIKV or JEV SVP mutants provoked the production of antibodies with lower cross-reactivity to heterologous MBFV antigens compared to immunization with the wild-type SVPs in mice. This study highlights the effectiveness of introducing mutations in the FL domain in MBFV SVPs with lineage I ISFV-derived amino acids to produce SVP antigens with low cross-reactivity and demonstrates an improvement in the accuracy of indirect ELISA-based serodiagnosis for MBFV infections. KEY POINTS: • The FL domain of Lineage I ISFV has a different antigenicity from that of MBFVs. • Mutated SVPs reduce the binding of cross-reactive antibodies in indirect ELISAs. • Inoculation of mutated SVPs induces antibodies with low cross-reactivity.


Encephalitis Virus, Japanese , Flavivirus , West Nile virus , Zika Virus Infection , Zika Virus , Animals , Mice , Flavivirus/genetics , Zika Virus/genetics , Antibodies, Viral , West Nile virus/genetics , Encephalitis Virus, Japanese/genetics , Mutation , Cross Reactions
4.
Sci Transl Med ; 15(679): eabq4064, 2023 01 18.
Article En | MEDLINE | ID: mdl-36327352

In parallel with vaccination, oral antiviral agents are highly anticipated to act as countermeasures for the treatment of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Oral antiviral medication demands not only high antiviral activity but also target specificity, favorable oral bioavailability, and high metabolic stability. Although a large number of compounds have been identified as potential inhibitors of SARS-CoV-2 infection in vitro, few have proven to be effective in vivo. Here, we show that oral administration of S-217622 (ensitrelvir), an inhibitor of SARS-CoV-2 main protease (Mpro; also known as 3C-like protease), decreases viral load and ameliorates disease severity in SARS-CoV-2-infected hamsters. S-217622 inhibited viral proliferation at low nanomolar to submicromolar concentrations in cells. Oral administration of S-217622 demonstrated favorable pharmacokinetic properties and accelerated recovery from acute SARS-CoV-2 infection in hamster recipients. Moreover, S-217622 exerted antiviral activity against SARS-CoV-2 variants of concern, including the highly pathogenic Delta variant and the recently emerged Omicron BA.5 and BA.2.75 variants. Overall, our study provides evidence that S-217622, an antiviral agent that is under evaluation in a phase 3 clinical trial (clinical trial registration no. jRCT2031210350), has remarkable antiviral potency and efficacy against SARS-CoV-2 and is a prospective oral therapeutic option for COVID-19.


COVID-19 , Humans , Cricetinae , SARS-CoV-2 , Viral Load , Prospective Studies , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/metabolism
5.
Parasitology ; 149(1): 105-115, 2022 01.
Article En | MEDLINE | ID: mdl-35184787

Poultry red mites (Dermanyssus gallinae, PRM) are dangerous ectoparasites that infest chickens and threaten the poultry industry worldwide. PRMs usually develop resistance to chemical acaricides, necessitating the development of more effective preventive agents, and vaccination could be an alternative strategy for controlling PRMs. The suitability of plasma membrane proteins expressed in the midguts as vaccine antigens was evaluated because these molecules are exposed to antibodies in the ingested blood and the binding of antibodies could potentially induce direct damage to midgut tissue and indirect damage via inhibition of the functions of target molecules. Therefore, in the present study, a copper transporter 1-like molecule (Dg-Ctr1) was identified and its efficacy as a vaccine antigen was assessed in vitro. Dg-Ctr1 mRNA was expressed in the midguts and ovaries and in all the life stages, and flow cytometric analysis indicated that Dg-Ctr1 was expressed on the plasma membrane. Importantly, nymphs fed on plasma derived from chickens immunized with the recombinant protein of the extracellular region of Dg-Ctr1 showed a significant reduction in the survival rate. These data indicate that the application of Dg-Ctr1 as a vaccine antigen could reduce the number of nymphs in the farms, contributing to reduction in the economic losses caused by PRMs in the poultry industry. To establish an effective vaccination strategy, the acaricidal effects of the combined use of Dg-Ctr1 with chemical acaricides or other vaccine antigens must be examined.


Mite Infestations , Mites , Poultry Diseases , Vaccines , Animals , Chickens/parasitology , Copper Transporter 1 , Mite Infestations/parasitology , Mite Infestations/prevention & control , Mite Infestations/veterinary , Mites/genetics , Poultry Diseases/parasitology
6.
Poult Sci ; 101(3): 101638, 2022 Mar.
Article En | MEDLINE | ID: mdl-34986449

Poultry red mites (PRMs, Dermanyssus gallinae) are hematophagous ectoparasites that negatively affect egg production, which causes serious economic losses to the poultry industry worldwide. Currently, the emergence of acaricide-resistant PRMs has impeded PRM control in poultry farms. Several alternatives for acaricide use have been described for managing PRM-caused problems. Vaccination is among the methods for controlling PRMs in poultry houses. Currently, several candidates for vaccine antigens have been identified. This study identified a cysteine protease, Deg-CPR-2, which differs from 2 other previously reported cysteine proteases in PRMs, from previously obtained data from RNA-sequencing (RNA-seq) analysis. We investigated the characteristics of Deg-CPR-2 and assessed its efficacy as a vaccine antigen in vitro. Phylogenetic analysis revealed that Deg-CPR-2 belonged to a different cluster from those of other cysteine proteases in PRMs. This cluster also included cathepsin L-like proteases, enzymes thought to be involved in hemoglobin digestion in ticks. Expression analysis revealed Deg-CPR-2 expression in midguts and all the life-stages; however, there were differences in the expression levels across the life-stages. The enzyme activity of recombinant Deg-CPR-2 was inhibited in the presence of a cysteine protease inhibitor, which suggests that Deg-CPR-2 functions as a cysteine protease in PRMs. Finally, there was an in vitro increase in the mortality of PRMs, mainly protonymphs that were artificially fed with plasma from chickens immunized with Deg-CPR-2. These findings suggest that Deg-CPR-2 may contribute to protein digestion in the midgut of PRMs and is crucially involved in physiological processes in PRMs. Additionally, immunization with Deg-CPR-2 may reduce the number of protonymphs, and Deg-CPR-2 should be considered as a candidate antigen for anti-PRM vaccine development.


Cysteine Proteases , Mite Infestations , Mites , Poultry Diseases , Vaccines , Animals , Mite Infestations/parasitology , Mite Infestations/prevention & control , Mite Infestations/veterinary , Phylogeny , Poultry , Poultry Diseases/parasitology , Poultry Diseases/prevention & control
7.
Vaccines (Basel) ; 9(12)2021 Dec 13.
Article En | MEDLINE | ID: mdl-34960218

Poultry red mite (PRM; Dermanyssus gallinae) is a hazardous, blood-sucking ectoparasite of birds that constitutes a threat to poultry farming worldwide. Acaricides, commonly used in poultry farms to prevent PRMs, are not effective because of the rapid emergence of acaricide-resistant PRMs. However, vaccination may be a promising strategy to control PRM. We identified a novel cystatin-like molecule in PRMs: Dg-Cys. Dg-Cys mRNA expression was detected in the midgut and ovaries, in all stages of life. The PRM nymphs that were artificially fed with the plasma from chickens that were immunized with Dg-Cys in vitro had a significantly reduced reproductive capacity and survival rate. Moreover, combination of Dg-Cys with other antigen candidates, like copper transporter 1 or adipocyte plasma membrane-associated protein, enhanced vaccine efficacies. vaccination and its application as an antigen for cocktail vaccines could be an effective strategy to reduce the damage caused by PRMs in poultry farming.

8.
Vaccine ; 39(41): 6057-6066, 2021 10 01.
Article En | MEDLINE | ID: mdl-34509323

The poultry red mite (Dermanyssus gallinae; PRM) is a blood-sucking ectoparasite of chickens that is a threat to poultry farming worldwide and significantly reduces productivity in the egg-laying industry. Chemical acaricides that are widely used in poultry farms for the prevention of PRMs are frequently ineffective due to the emergence of acaricide-resistant PRMs. Therefore, alternative control methods are needed, and vaccination is a promising strategy for controlling PRMs. A novel adipocyte-plasma membrane-associated protein-like molecule (Dg-APMAP) is highly expressed in blood-fed PRMs according to a previous RNA sequencing analysis. Here, we attempted to identify the full sequence of Dg-APMAP, study its expression in different life stages of PRMs, and evaluate its potential as a vaccine antigen. Dg-APMAP mRNA was expressed in the midgut and ovaries, and in all life stages regardless of feeding states. Importantly, in vitro feeding of PRMs with plasma derived from chickens immunized with the recombinant protein of the extracellular region of Dg-APMAP significantly reduced their survival rate in nymphs and adults, which require blood meals. Our data suggest that the host immune responses induced by vaccination with Dg-APMAP could be an effective strategy to reduce the suffering caused by PRMs in the poultry industry.


Mite Infestations , Mites , Poultry Diseases , Vaccines , Adipocytes , Animals , Chickens , Membrane Proteins , Poultry , Poultry Diseases/prevention & control
9.
J Vet Med Sci ; 83(4): 558-565, 2021 Apr 09.
Article En | MEDLINE | ID: mdl-33583914

Poultry red mites (PRMs, Dermanyssus gallinae) are harmful ectoparasites that affect farmed chickens and cause serious economic losses in the poultry industry worldwide. Acaricides are used for PRM control; however, some PRMs have developed acaricide-resistant properties, which have indicated the need for different approaches for PRM control. Therefore, it is necessary to elucidate the biological status of PRMs to develop alternative PRM control strategies. Quantitative polymerase chain reaction (qPCR) allows analysis of the biological status at the transcript level. However, reference genes are preferable for accurate comparison of expression level changes given the large variation in the quality of the PRM samples collected in each farm. This study aimed to identify candidate reference genes with stable expression levels in the different blood feeding states and life stages of PRMs. First, we selected candidates based on the following criteria: sufficient expression intensity and no significant expression difference between fed and starved states. We selected and characterized seven candidate reference genes. Among them, we evaluated the gene expression stability between the starved and fed states using RefFinder; moreover, we compared their expression levels in each life-stage and identified two reference genes, Elongation factor 1-alpha (ELF1A)-like and apolipophorins-like. Finally, we evaluated the utility of the candidates as reference genes, and the use of ELF1A-like and apolipophorins-like successfully normalized ATP synthase subunit g -like gene expression. Thus, ELF1A-like and apolipophorins-like could be suitable reference genes in PRMs.


Mite Infestations , Mites , Poultry Diseases , Animals , Chickens , Mite Infestations/veterinary , Mites/genetics , Polymerase Chain Reaction/veterinary , Poultry
...