Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35324438

RESUMEN

Many interventional surgical procedures rely on medical imaging to visualize and track instruments. Such imaging methods not only need to be real time capable but also provide accurate and robust positional information. In ultrasound (US) applications, typically, only 2-D data from a linear array are available, and as such, obtaining accurate positional estimation in three dimensions is nontrivial. In this work, we first train a neural network, using realistic synthetic training data, to estimate the out-of-plane offset of an object with the associated axial aberration in the reconstructed US image. The obtained estimate is then combined with a Kalman filtering approach that utilizes positioning estimates obtained in previous time frames to improve localization robustness and reduce the impact of measurement noise. The accuracy of the proposed method is evaluated using simulations, and its practical applicability is demonstrated on experimental data obtained using a novel optical US imaging setup. Accurate and robust positional information is provided in real time. Axial and lateral coordinates for out-of-plane objects are estimated with a mean error of 0.1 mm for simulated data and a mean error of 0.2 mm for experimental data. The 3-D localization is most accurate for elevational distances larger than 1 mm, with a maximum distance of 6 mm considered for a 25-mm aperture.


Asunto(s)
Redes Neurales de la Computación , Imagen Óptica , Ultrasonografía/métodos
2.
Bioinformatics ; 36(12): 3795-3802, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32186692

RESUMEN

MOTIVATION: Improved DNA technology has made it practical to estimate single-nucleotide polymorphism (SNP)-heritability among distantly related individuals with unknown relationships. For growth- and development-related traits, it is meaningful to base SNP-heritability estimation on longitudinal data due to the time-dependency of the process. However, only few statistical methods have been developed so far for estimating dynamic SNP-heritability and quantifying its full uncertainty. RESULTS: We introduce a completely tuning-free Bayesian Gaussian process (GP)-based approach for estimating dynamic variance components and heritability as their function. For parameter estimation, we use a modern Markov Chain Monte Carlo method which allows full uncertainty quantification. Several datasets are analysed and our results clearly illustrate that the 95% credible intervals of the proposed joint estimation method (which 'borrows strength' from adjacent time points) are significantly narrower than of a two-stage baseline method that first estimates the variance components at each time point independently and then performs smoothing. We compare the method with a random regression model using MTG2 and BLUPF90 software and quantitative measures indicate superior performance of our method. Results are presented for simulated and real data with up to 1000 time points. Finally, we demonstrate scalability of the proposed method for simulated data with tens of thousands of individuals. AVAILABILITY AND IMPLEMENTATION: The C++ implementation dynBGP and simulated data are available in GitHub: https://github.com/aarjas/dynBGP. The programmes can be run in R. Real datasets are available in QTL archive: https://phenome.jax.org/centers/QTLA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Polimorfismo de Nucleótido Simple , Programas Informáticos , Teorema de Bayes , Humanos , Método de Montecarlo , Distribución Normal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA