Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleus ; 11(1): 194-204, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32816594

RESUMEN

The nuclear lamina is a meshwork of intermediate filament proteins, and lamin A is the primary mechanical protein. An altered splicing of lamin A, known as progerin, causes the disease Hutchinson-Gilford progeria syndrome. Progerin-expressing cells have altered nuclear shapes and stiffened nuclear lamina with microaggregates of progerin. Here, progerin microaggregate inclusions in the lamina are shown to lead to cellular and multicellular dysfunction. We show with Comsol simulations that stiffened inclusions causes redistribution of normally homogeneous forces, and this redistribution is dependent on the stiffness difference and relatively independent of inclusion size. We also show mechanotransmission changes associated with progerin expression in cells under confinement and cells under external forces. Endothelial cells expressing progerin do not align properly with patterning. Fibroblasts expressing progerin do not align properly to applied cyclic force. Combined, these studies show that altered nuclear lamina mechanics and microstructure impacts cytoskeletal force transmission through the cell.


Asunto(s)
Fibroblastos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Lamina Tipo A/biosíntesis , Lamina Tipo A/metabolismo , Mecanotransducción Celular , Agregado de Proteínas , Humanos , Lamina Tipo A/genética
2.
Curr Biol ; 30(4): 624-633.e4, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31983640

RESUMEN

Epithelial cells spontaneously form acini (also known as cysts or spheroids) with a single, fluid-filled central lumen when grown in 3D matrices. The size of the lumen is dependent on apical secretion of chloride ions, most notably by the CFTR channel, which has been suggested to establish pressure in the lumen due to water influx. To study the cellular biomechanics of acini morphogenesis and homeostasis, we used MDCK-2 cells. Using FRET-force biosensors for E-cadherin, we observed significant increases in the average tension per molecule for each protein in mature 3D acini as compared to 2D monolayers. Increases in CFTR activity resulted in increased E-cadherin forces, indicating that ionic gradients affect cellular tension. Direct measurements of pressure revealed that mature acini experience significant internal hydrostatic pressure (37 ± 10.9 Pa). Changes in CFTR activity resulted in pressure and/or volume changes, both of which affect E-cadherin tension. Increases in CFTR chloride secretion also induced YAP signaling and cellular proliferation. In order to recapitulate disruption of acinar homeostasis, we induced epithelial-to-mesenchymal transition (EMT). During the initial stages of EMT, there was a gradual decrease in E-cadherin force and lumen pressure that correlated with lumen infilling. Strikingly, increasing CFTR activity was sufficient to block EMT. Our results show that ion secretion is an important regulator of morphogenesis and homeostasis in epithelial acini. Furthermore, this work demonstrates that, for closed 3D cellular systems, ion gradients can generate osmotic pressure or volume changes, both of which result in increased cellular tension.


Asunto(s)
Células Acinares/fisiología , Cadherinas/fisiología , Homeostasis , Morfogénesis , Animales , Fenómenos Biomecánicos , Perros , Células de Riñón Canino Madin Darby
3.
Proc Natl Acad Sci U S A ; 116(10): 4307-4315, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30765529

RESUMEN

The nuclear lamina is an intermediate filament meshwork adjacent to the inner nuclear membrane (INM) that plays a critical role in maintaining nuclear shape and regulating gene expression through chromatin interactions. Studies have demonstrated that A- and B-type lamins, the filamentous proteins that make up the nuclear lamina, form independent but interacting networks. However, whether these lamin subtypes exhibit a distinct spatial organization or whether their organization has any functional consequences is unknown. Using stochastic optical reconstruction microscopy (STORM) our studies reveal that lamin B1 and lamin A/C form concentric but overlapping networks, with lamin B1 forming the outer concentric ring located adjacent to the INM. The more peripheral localization of lamin B1 is mediated by its carboxyl-terminal farnesyl group. Lamin B1 localization is also curvature- and strain-dependent, while the localization of lamin A/C is not. We also show that lamin B1's outer-facing localization stabilizes nuclear shape by restraining outward protrusions of the lamin A/C network. These two findings, that lamin B1 forms an outer concentric ring and that its localization is energy-dependent, are significant as they suggest a distinct model for the nuclear lamina-one that is able to predict its behavior and clarifies the distinct roles of individual nuclear lamin proteins and the consequences of their perturbation.


Asunto(s)
Lamina Tipo A , Lamina Tipo B , Lámina Nuclear , Humanos , Núcleo Celular/metabolismo , Células HeLa , Lamina Tipo A/química , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lamina Tipo B/química , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Microscopía , Membrana Nuclear/metabolismo , Lámina Nuclear/metabolismo
4.
Sci Rep ; 8(1): 18084, 2018 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-30591710

RESUMEN

DNA double-strand breaks pose a direct threat to genomic stability. Studies of DNA damage and chromatin dynamics have yielded opposing results that support either increased or decreased chromatin motion after damage. In this study, we independently measure the dynamics of transcriptionally active or repressed chromatin regions using particle tracking microrheology. We find that the baseline motion of transcriptionally repressed regions of chromatin are significantly less mobile than transcriptionally active chromatin, which is statistically similar to the bulk motion of chromatin within the nucleus. Site specific DNA damage using KillerRed tags induced in loci within repressed chromatin causes an increased motion, while loci within transcriptionally active regions remains unchanged at similar time scales. We also observe a time-dependent response associated with a further increase in chromatin decondensation. Global induction of damage with bleocin displays similar trends of chromatin decondensation and increased mobility only at 53BP1-labeled damage sites but not at non-damaged sites, indicating that chromatin dynamics are tightly regulated locally after damage. These results shed light on the evolution of the local and global DNA damage response associated with chromatin remodeling and dynamics, with direct implications for their role in repair.


Asunto(s)
Cromatina/genética , Daño del ADN , Línea Celular Tumoral , Núcleo Celular/genética , Ensamble y Desensamble de Cromatina , Roturas del ADN de Doble Cadena , Genes Reporteros , Humanos , Activación Transcripcional
5.
J Cell Sci ; 131(12)2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29748381

RESUMEN

Force generation within cells, mediated by motor proteins along cytoskeletal networks, maintains the function of multicellular structures during homeostasis and when generating collective forces. Here, we describe the use of chromatin dynamics to detect cellular force propagation [a technique termed SINK (sensors from intranuclear kinetics)] and investigate the force response of cells to disruption of the monolayer and changes in substrate stiffness. We find that chromatin dynamics change in a substrate stiffness-dependent manner within epithelial monolayers. We also investigate point defects within monolayers to map the impact on the strain field of a heterogeneous monolayer. We find that cell monolayers behave as a colloidal assembly rather than as a continuum since the data fit an exponential decay; the lateral characteristic length of recovery from the mechanical defect is ∼50 µm for cells with a 10 µm spacing. At distances greater than this characteristic length, cells behave similarly to those in a fully intact monolayer. This work demonstrates the power of SINK to investigate diseases including cancer and atherosclerosis that result from single cells or heterogeneities in monolayers.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Citoesqueleto/fisiología , Células Epiteliales/citología , Fenómenos Biomecánicos , Cromatina/fisiología , Humanos , Reología/métodos
6.
J Biomech ; 49(16): 3983-3989, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27836504

RESUMEN

Spectrins are multi-domain, elastic proteins that provide elasticity to the plasma membrane of erythrocytes and select nucleated cells. Spectrins have also been found in the nucleus of non-erythrocytes, but their function remains to be uncovered. It has been hypothesized that a spring-like spectrin network exists within the lamina nucleoskeleton, however, experiments testing a spectrin network׳s mechanical impact on the nucleus are lacking. Here, we knock-down levels of nuclear αII-spectrin with the goal of disrupting this nucleoskeletal spectrin network. We mechanically test live cells with intranuclear particle tracking and compression assays to probe changes in nuclear mechanics with decreases in αII-spectrin. We show no changes in chromatin mechanics or in the stiffness of nuclei under compression. However, we do observe a reduction in the ability of nuclei with decreased αII-spectrin to recover after compression. These results establish spectrin as a nucleoskeletal component that specifically contributes to elastic recovery after compression.


Asunto(s)
Núcleo Celular/fisiología , Espectrina/fisiología , Células HeLa , Humanos , Estrés Mecánico
7.
Cell Mol Bioeng ; 9(2): 268-276, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28163791

RESUMEN

The view of the cell nucleus has evolved from an isolated, static organelle to a dynamic structure integrated with other mechanical elements of the cell. Both dynamics and integration appear to contribute to a mechanical regulation of genome expression. Here, we review physical structures inside the nucleus at different length scales and the dynamic reorganization modulated by cellular forces. First, we discuss nuclear organization focusing on self-assembly and disassembly of DNA structures and various nuclear bodies. We then discuss the importance of connections from the chromatin fiber through the nuclear envelope to the rest of the cell as they relate to mechanobiology. Finally, we discuss how cell stimulation, both chemical and physical, can alter nuclear structures and ultimately cellular function in healthy cells and in some model diseases. The view of chromatin and nuclear bodies as mechanical entities integrated with force generation from the cytoskeleton combines polymer physics with cell biology and medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...