Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Bot ; 107(3): 489-497, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32096224

RESUMEN

PREMISE: Cold tolerance is an important factor limiting the geographic distribution and growing season for many plant species, yet few studies have examined variation in cold tolerance extensively within and among closely related species and compared that to their geographic distribution. METHODS: This study examines cold tolerance within and among species in the genus Arabidopsis. We assessed cold tolerance by measuring electrolyte leakage from detached leaves in multiple populations of five Arabidopsis taxa. The temperature at which 50% of cells were lysed was considered the lethal temperature (LT50 ). RESULTS: We found variability within and among taxa in cold tolerance. There was no significant within-species relationship between latitude and cold tolerance. However, the northern taxa, A. kamchatica, A. lyrata subsp. petraea, and A. lyrata subsp. lyrata, were more cold tolerant than A. thaliana and A. halleri subsp. gemmifera both before and after cold acclimation. Cold tolerance increased after cold acclimation (exposure to low, but nonfreezing temperatures) for all taxa, although the difference was not significant for A. halleri subsp. gemmifera. For all taxa except A. lyrata subsp. lyrata, the LT50 values for cold-acclimated plants were higher than the January mean daily minimum temperature (Tmin ), indicating that if plants were not insulated by snow cover, they would not likely survive winter at the northern edge of their range. CONCLUSIONS: Arabidopsis lyrata and A. kamchatica were far more cold tolerant than A. thaliana. These extremely cold-tolerant taxa are excellent candidates for studying both the molecular and ecological aspects of cold tolerance.


Asunto(s)
Arabidopsis , Aclimatación , Frío , Variación Genética , Hojas de la Planta
2.
Am J Bot ; 102(3): 439-48, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25784477

RESUMEN

UNLABELLED: • PREMISE OF THE STUDY: Cold tolerance is a critically important factor determining how plants will be influenced by climate change, including changes in snowcover and extreme weather events. Although a great deal is known about cold tolerance in Arabidopsis thaliana, it is not highly cold tolerant. This study examined cold tolerance and its genetic diversity in an herbaceous subarctic relative, Arabidopsis kamchatica, which generally occurs in much colder climates.• METHODS: Thermal analysis and electrolyte leakage were used to estimate supercooling points and lethal temperatures (LT50) in cold-acclimated and nonacclimated families from three populations of A. kamchatica.• KEY RESULTS: Arabidopsis kamchatica was highly cold tolerant, with a mean LT50 of -10.8°C when actively growing, and -21.8°C when cold acclimated. It also was able to supercool to very low temperatures. Surprisingly, actively growing plants supercooled more than acclimated plants (-14.7 vs. -12.7°C). There was significant genetic variation for cold tolerance both within and among populations. However, both cold tolerance and genetic diversity were highest in the midlatitude population rather than in the far north, indicating that adaptations to climate change are most likely to arise in the center of the species range rather than at the edges.• CONCLUSIONS: Arabidopsis kamchatica is highly cold tolerant throughout its range. It is far more freeze tolerant than A. thaliana, and supercooled to lower temperatures, suggesting that A. kamchatica provides a valuable complement to A. thaliana for cold tolerance research.


Asunto(s)
Aclimatación , Arabidopsis/fisiología , Variación Genética , Alaska , Arabidopsis/genética , Colombia Británica , Cambio Climático , Frío
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...