Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 30(22): 2771-2789, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31509480

RESUMEN

Budding yeast treated with hydroxyurea (HU) activate the S phase checkpoint kinase Rad53, which prevents DNA replication forks from undergoing aberrant structural transitions and nuclease processing. Rad53 is also required to prevent premature extension of the mitotic spindle that assembles during a HU-extended S phase. Here we present evidence that checkpoint restraint of spindle extension is directly coupled to Rad53 control of replication fork stability. In budding yeast, centromeres are flanked by replication origins that fire in early S phase. Mutations affecting the Zn2+-finger of Dbf4, an origin activator, preferentially reduce centromere-proximal origin firing in HU, corresponding with suppression of rad53 spindle extension. Inactivating Exo1 nuclease or displacing centromeres from origins provides a similar suppression. Conversely, short-circuiting Rad53 targeting of Dbf4, Sld3, and Dun1, substrates contributing to fork stability, induces spindle extension. These results reveal spindle extension in HU-treated rad53 mutants is a consequence of replication fork catastrophes at centromeres. When such catastrophes occur, centromeres become susceptible to nucleases, disrupting kinetochore function and spindle force balancing mechanisms. At the same time, our data indicate centromere duplication is not required to stabilize S phase spindle structure, leading us to propose a model for how monopolar kinetochore-spindle attachments may contribute to spindle force balance in HU.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Replicación del ADN/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/metabolismo , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Centrómero/genética , Centrómero/metabolismo , Quinasa de Punto de Control 2/genética , Segregación Cromosómica/efectos de los fármacos , Estructuras Cromosómicas/metabolismo , Daño del ADN/genética , Replicación del ADN/genética , ADN de Hongos/genética , Cinetocoros/metabolismo , Origen de Réplica , Fase S/fisiología , Puntos de Control de la Fase S del Ciclo Celular/genética , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Food Technol Biotechnol ; 54(3): 257-265, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27956856

RESUMEN

We have constructed two plasmids that can be used for cloning as templates for PCR- -based gene disruption, mutagenesis and the construction of DNA chromosome translocation cassettes. To our knowledge, these plasmids are the first vectors that confer resistance to ampicillin, kanamycin and hygromycin B in bacteria, and to geneticin (G418) and hygromycin B in Saccharomyces cerevisiae simultaneously. The option of simultaneously using up to three resistance markers provides a highly stringent control of recombinant selection and the almost complete elimination of background resistance, while unique restriction sites allow easy cloning of chosen genetic material. Moreover, we successfully used these new vectors as PCR templates for the induction of chromosome translocation in budding yeast by the bridge-induced translocation system. Cells in which translocation was induced carried chromosomal rearrangements as expected and exhibited resistance to both, G418 and hygromycin B. These features make our constructs very handy tools for many molecular biology applications.

3.
Genome Res ; 25(3): 402-12, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25609572

RESUMEN

We have previously demonstrated that in Saccharomyces cerevisiae replication, checkpoint inactivation via a mec1 mutation leads to chromosome breakage at replication forks initiated from virtually all origins after transient exposure to hydroxyurea (HU), an inhibitor of ribonucleotide reductase. Here we sought to determine whether all replication forks containing single-stranded DNA gaps have equal probability of producing double-strand breaks (DSBs) when cells attempt to recover from HU exposure. We devised a new methodology, Break-seq, that combines our previously described DSB labeling with next generation sequencing to map chromosome breaks with improved sensitivity and resolution. We show that DSBs preferentially occur at genes transcriptionally induced by HU. Notably, different subsets of the HU-induced genes produced DSBs in MEC1 and mec1 cells as replication forks traversed a greater distance in MEC1 cells than in mec1 cells during recovery from HU. Specifically, while MEC1 cells exhibited chromosome breakage at stress-response transcription factors, mec1 cells predominantly suffered chromosome breakage at transporter genes, many of which are the substrates of those transcription factors. We propose that HU-induced chromosome fragility arises at higher frequency near HU-induced genes as a result of destabilized replication forks encountering transcription factor binding and/or the act of transcription. We further propose that replication inhibitors can induce unscheduled encounters between replication and transcription and give rise to distinct patterns of chromosome fragile sites.


Asunto(s)
Fragilidad Cromosómica/efectos de los fármacos , Roturas del ADN de Doble Cadena , Replicación del ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Hidroxiurea/farmacología , Transcripción Genética , Ciclo Celular/genética , Rotura Cromosómica , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Iones/metabolismo , Proteínas de Transporte de Membrana/genética , Metales/metabolismo , Origen de Réplica , Estrés Fisiológico , Factores de Transcripción/metabolismo , Levaduras/efectos de los fármacos , Levaduras/genética , Levaduras/metabolismo
4.
Front Oncol ; 2: 212, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23346549

RESUMEN

Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression (i) the activity of pyruvate kinase (PK), which recapitulates metabolic features of cancer cells, including the Warburg effect, and (ii) chromosome bridge-induced translocation (BIT) mimiking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect), and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, PK, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and post-translational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants ("translocants"), between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the BIT system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...