Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
Nat Commun ; 12(1): 1615, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712580

RESUMEN

Exceptionally long-lived species, including many bats, rarely show overt signs of aging, making it difficult to determine why species differ in lifespan. Here, we use DNA methylation (DNAm) profiles from 712 known-age bats, representing 26 species, to identify epigenetic changes associated with age and longevity. We demonstrate that DNAm accurately predicts chronological age. Across species, longevity is negatively associated with the rate of DNAm change at age-associated sites. Furthermore, analysis of several bat genomes reveals that hypermethylated age- and longevity-associated sites are disproportionately located in promoter regions of key transcription factors (TF) and enriched for histone and chromatin features associated with transcriptional regulation. Predicted TF binding site motifs and enrichment analyses indicate that age-related methylation change is influenced by developmental processes, while longevity-related DNAm change is associated with innate immunity or tumorigenesis genes, suggesting that bat longevity results from augmented immune response and cancer suppression.


Asunto(s)
Quirópteros/genética , Metilación de ADN , Longevidad/genética , Envejecimiento/genética , Animales , Carcinogénesis/genética , Cromatina , Epigénesis Genética , Técnicas Genéticas , Histonas , Inmunidad Innata/genética , Filogenia
4.
PLoS One ; 7(6): e38791, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22719947

RESUMEN

BACKGROUND: Bat pups produce individually distinct isolation calls to facilitate maternal recognition. Increasing evidence suggests that, in group-living bat species, adults often use similar calls to maintain contact. We investigated if isolated adults from all three species of the highly cooperative vampire bats (Phyllostomidae: Desmodontinae) would produce vocally distinct contact calls when physically isolated. METHODS/PRINCIPAL FINDINGS: We assessed variation in contact calls recorded from isolated captive and wild-caught adult common vampire bats (Desmodus rotundus), white-winged vampire bats (Diaemus youngi) and hairy-legged vampire bats (Diphylla ecaudata). We compared species-typical contact call structure, and used information theory and permuted discriminate function analyses to examine call structure variation, and to determine if the individuality of contact calls is encoded by different call features across species and populations. We found that isolated adult vampire bats produce contact calls that vary by species, population, colony, and individual. However, much variation occurred within a single context and individual. We estimated signature information for captive Diaemus (same colony), captive Desmodus (same colony), and wild Desmodus (different colonies) at 3.21, 3.26, and 3.88 bits, respectively. Contact calls from a captive colony of Desmodus were less individually distinct than calls from wild-caught Desmodus from different colonies. Both the degree of individuality and parameters encoding individuality differed between the bats from a single captive colony and the wild-caught individuals from different groups. This result is consistent with, but not sufficient evidence of, vocal convergence in groups. CONCLUSION: Our results show that adult vampire bats of all three species produce highly variable contact calls when isolated. Contact calls contain sufficient information for vocal discrimination, but also possess more intra-individual variation than is required for the sole purpose of identifying individuals.


Asunto(s)
Acústica , Quirópteros/fisiología , Animales , Quirópteros/clasificación , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...