Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Sci Rep ; 13(1): 21480, 2023 12 06.
Article En | MEDLINE | ID: mdl-38057401

Bone quality is commonly used to diagnose bone diseases such as osteoporosis, with many studies focusing on microarchitecture for fracture prediction. In this study a bovine distal femur was imaged using both micro-computed tomography (µCT) and tomosynthesis using focal construct geometry (FCG) for comparison of microarchitectural parameters. Six regions of interest (ROIs) were compared between the two imaging modalities, with both global and adaptive methods used to binarize the images. FCG images were downsampled to the same pixel size as the µCT images. Bone morphometrics were determined using BoneJ, for each imaging modality, binarization technique and ROI. Bone area/total area was found to have few significant differences between FCG and µCT (p < 0.05 for two of six ROIs). Fractal Dimension had only one significant difference (p < 0.05 for one of six ROIs) between µCT and downsampled FCG (where pixel size was equalized). Trabecular thickness and trabecular spacing were observed to follow trends as observed for the corresponding µCT images, although many absolute values were significantly different (p < 0.05 for between one and six ROIs depending on image types used). This study demonstrates the utility of tomosynthesis for measurement of microarchitectural morphometrics.


Bone and Bones , Osteoporosis , Animals , Cattle , X-Ray Microtomography/methods , X-Rays , Femur/diagnostic imaging , Bone Density
2.
Sci Rep ; 13(1): 9331, 2023 06 08.
Article En | MEDLINE | ID: mdl-37291276

Ductal carcinoma in-situ (DCIS) accounts for 20-25% of all new breast cancer diagnoses. DCIS has an uncertain risk of progression to invasive breast cancer and a lack of predictive biomarkers may result in relatively high levels (~ 75%) of overtreatment. To identify unique prognostic biomarkers of invasive progression, crystallographic and chemical features of DCIS microcalcifications have been explored. Samples from patients with at least 5-years of follow up and no known recurrence (174 calcifications in 67 patients) or ipsilateral invasive breast cancer recurrence (179 microcalcifications in 57 patients) were studied. Significant differences were noted between the two groups including whitlockite relative mass, hydroxyapatite and whitlockite crystal maturity and, elementally, sodium to calcium ion ratio. A preliminary predictive model for DCIS to invasive cancer progression was developed from these parameters with an AUC of 0.797. These results provide insights into the differing DCIS tissue microenvironments, and how these impact microcalcification formation.


Breast Neoplasms , Calcinosis , Carcinoma, Ductal, Breast , Carcinoma, Intraductal, Noninfiltrating , Humans , Female , Carcinoma, Intraductal, Noninfiltrating/diagnostic imaging , Carcinoma, Intraductal, Noninfiltrating/pathology , Carcinoma, Ductal, Breast/pathology , Crystallography , Calcinosis/diagnostic imaging , Calcinosis/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Neoplasm Recurrence, Local/pathology , Tumor Microenvironment
3.
Acta Crystallogr C Struct Chem ; 78(Pt 5): 271-279, 2022 05 01.
Article En | MEDLINE | ID: mdl-35510432

Hydroxyapatite (HA) is a complex material, which is often nanocrystalline when found within a biological setting. This work has directly compared the structural characteristics derived from data collected using a conventional laboratory-based X-ray diffractometer with those collected from a dedicated pair distribution function (PDF) beamline at Diamond Light Source. In particular, the application of PDF analysis methods to carbonated HA is evaluated. 20 synthetic samples were measured using both X-ray diffraction (XRD) and PDFs. Both Rietveld refinement (of laboratory XRD data) and real-space refinement (of PDF data) were used to analyse all samples. The results of Rietveld and real-space refinements were compared to evaluate their application to crystalline and nanocrystalline hydroxyapatite. Significant relationships were observed between real-space refinement parameters and increasing carbonate substitution. Understanding the local order of synthetic hydroxyapatite can benefit several fields, including both biomedical and clinical settings.


Carbonates , Durapatite , Carbonates/chemistry , Crystallography, X-Ray , Durapatite/chemistry , Hydrogen Bonding , X-Ray Diffraction
4.
Sci Rep ; 10(1): 19597, 2020 11 11.
Article En | MEDLINE | ID: mdl-33177578

Biogenic and synthetic hydroxyapatites are confounding materials whose properties remain uncertain, even after years of study. Pair distribution function (PDF) analysis was applied to hydroxyapatites in the 1970's and 1980's, but this area of research has not taken full advantage of the relatively recent advances in synchrotron facilities. Here, synchrotron X-ray PDF analysis is compared to techniques commonly used to characterise hydroxyapatite (such as wide angle X-ray scattering, Fourier-transform infrared spectroscopy and thermogravimetric analysis) for a range of biogenic and synthetic hydroxyapatites with a wide range of carbonate substitution. Contributions to the pair distribution function from collagen, carbonate and finite crystallite size were examined through principal component analysis and comparison of PDFs. Noticeable contributions from collagen were observed in biogenic PDFs when compared to synthetic PDFs (namely r < 15 Å), consistent with simulated PDFs of collagen structures. Additionally, changes in local structure were observed for PDFs of synthetic hydroxyapatites with differing carbonate content, notably in features near 4 Å, 8 Å and 19 Å. Regression models were generated to predict carbonate substitution from peak position within the PDFs.

5.
J Mech Behav Biomed Mater ; 103: 103585, 2020 03.
Article En | MEDLINE | ID: mdl-32090913

Osteoporosis (OP) is a widespread condition with commonly associated fracture sites at the hip, vertebra and wrist. This study examines the effects of age and osteoporosis on bone quality by comparing the efficacy of using parameters which indicate bone quality (both traditional clinical parameters such as bone mineral density (BMD), as well as apparent Young's modulus determined by finite element analysis, among others) to predict fracture. Non-fracture samples were collected from the femoral heads of 83 donors (44 males, 39 females), and fracture samples were obtained from the femoral heads of 17 donors (female). Microarchitectural parameters (Bone Volume/Total Volume [BV/TV], Bone Surface/Bone Volume [BS/BV], Tissue Mineral Density [TMD, etc.]) were measured from µCT of each sample as well as 2D and 3D fractal dimension (D2D and D3D respectively). A cube was cropped from µCT images and an isotropic hexahedral element was assigned to each voxel. Finite element analysis was used to calculate the Young's modulus for each sample. Overall, values for microarchitectural characteristics, fractal dimension measurements and Young's Modulus were consistent with values within literature. Significant correlations are observed between age and BV/TV for non-fracture males and females, as well as between age and volumetric BMD (vBMD) for the same groups. Significant differences are present between age-matched non-fracture and fracture females for BV/TV, BS/BV, vBMD, TMD, D2D, D3D, (p < 0.01 for all). Properties which are not age dependent are significantly different between age-matched non-fracture and fracture specimens, indicating OP is a disease, and not just an accelerated aging process.


Fractures, Bone , Osteoporosis , Bone Density , Female , Finite Element Analysis , Fractals , Fractures, Bone/diagnostic imaging , Humans , Male , Osteoporosis/diagnostic imaging
...