Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 200(13)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29632097

RESUMEN

Sinorhizobium meliloti enters into beneficial symbiotic interactions with Medicago species of legumes. Bacterial exopolysaccharides play critical signaling roles in infection thread initiation and growth during the early stages of root nodule formation. After endocytosis of S. meliloti by plant cells in the developing nodule, plant-derived nodule-specific cysteine-rich (NCR) peptides mediate terminal differentiation of the bacteria into nitrogen-fixing bacteroids. Previous transcriptional studies showed that the intensively studied cationic peptide NCR247 induces expression of the exo genes that encode the proteins required for succinoglycan biosynthesis. In addition, genetic studies have shown that some exo mutants exhibit increased sensitivity to the antimicrobial action of NCR247. Therefore, we investigated whether the symbiotically active S. meliloti exopolysaccharide succinoglycan can protect S. meliloti against the antimicrobial activity of NCR247. We discovered that high-molecular-weight forms of succinoglycan have the ability to protect S. meliloti from the antimicrobial action of the NCR247 peptide but low-molecular-weight forms of wild-type succinoglycan do not. The protective function of high-molecular-weight succinoglycan occurs via direct molecular interactions between anionic succinoglycan and the cationic NCR247 peptide, but this interaction is not chiral. Taken together, our observations suggest that S. meliloti exopolysaccharides not only may be critical during early stages of nodule invasion but also are upregulated at a late stage of symbiosis to protect bacteria against the bactericidal action of cationic NCR peptides. Our findings represent an important step forward in fully understanding the complete set of exopolysaccharide functions during legume symbiosis.IMPORTANCE Symbiotic interactions between rhizobia and legumes are economically important for global food production. The legume symbiosis also is a major part of the global nitrogen cycle and is an ideal model system to study host-microbe interactions. Signaling between legumes and rhizobia is essential to establish symbiosis, and understanding these signals is a major goal in the field. Exopolysaccharides are important in the symbiotic context because they are essential signaling molecules during early-stage symbiosis. In this study, we provide evidence suggesting that the Sinorhizobium meliloti exopolysaccharide succinoglycan also protects the bacteria against the antimicrobial action of essential late-stage symbiosis plant peptides.


Asunto(s)
Medicago truncatula/microbiología , Polisacáridos Bacterianos/metabolismo , Sinorhizobium meliloti/fisiología , Simbiosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Medicago truncatula/fisiología , Fijación del Nitrógeno , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Sinorhizobium meliloti/genética
2.
mBio ; 8(4)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28765224

RESUMEN

The model legume species Medicago truncatula expresses more than 700 nodule-specific cysteine-rich (NCR) signaling peptides that mediate the differentiation of Sinorhizobium meliloti bacteria into nitrogen-fixing bacteroids. NCR peptides are essential for a successful symbiosis in legume plants of the inverted-repeat-lacking clade (IRLC) and show similarity to mammalian defensins. In addition to signaling functions, many NCR peptides exhibit antimicrobial activity in vitro and in vivo Bacterial resistance to these antimicrobial activities is likely to be important for symbiosis. However, the mechanisms used by S. meliloti to resist antimicrobial activity of plant peptides are poorly understood. To address this, we applied a global genetic approach using transposon mutagenesis followed by high-throughput sequencing (Tn-seq) to identify S. meliloti genes and pathways that increase or decrease bacterial competitiveness during exposure to the well-studied cationic NCR247 peptide and also to the unrelated model antimicrobial peptide polymyxin B. We identified 78 genes and several diverse pathways whose interruption alters S. meliloti resistance to NCR247. These genes encode the following: (i) cell envelope polysaccharide biosynthesis and modification proteins, (ii) inner and outer membrane proteins, (iii) peptidoglycan (PG) effector proteins, and (iv) non-membrane-associated factors such as transcriptional regulators and ribosome-associated factors. We describe a previously uncharacterized yet highly conserved peptidase, which protects S. meliloti from NCR247 and increases competitiveness during symbiosis. Additionally, we highlight a considerable number of uncharacterized genes that provide the basis for future studies to investigate the molecular basis of symbiotic development as well as chronic pathogenic interactions.IMPORTANCE Soil rhizobial bacteria enter into an ecologically and economically important symbiotic interaction with legumes, in which they differentiate into physiologically distinct bacteroids that provide essential ammonia to the plant in return for carbon sources. Plant signal peptides are essential and specific to achieve these physiological changes. These peptides show similarity to mammalian defensin peptides which are part of the first line of defense to control invading bacterial populations. A number of these legume peptides are indeed known to possess antimicrobial activity, and so far, only the bacterial BacA protein is known to protect rhizobial bacteria against their antimicrobial action. This study identified numerous additional bacterial factors that mediate protection and belong to diverse biological pathways. Our results significantly contribute to our understanding of the molecular roles of bacterial factors during legume symbioses and, second, provide insights into the mechanisms that pathogenic bacteria may use to resist the antimicrobial effects of defensins during infections.


Asunto(s)
Defensinas/metabolismo , Medicago truncatula/microbiología , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Simbiosis , Proteínas Bacterianas/genética , Cisteína/metabolismo , Defensinas/farmacología , Secuenciación de Nucleótidos de Alto Rendimiento , Medicago truncatula/química , Proteínas de Transporte de Membrana/metabolismo , Mutagénesis , Fijación del Nitrógeno , Sinorhizobium meliloti/efectos de los fármacos
3.
Proc Natl Acad Sci U S A ; 113(36): 10157-62, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27551097

RESUMEN

Interactions of rhizobia with legumes establish the chronic intracellular infection that underlies symbiosis. Within nodules of inverted repeat-lacking clade (IRLC) legumes, rhizobia differentiate into nitrogen-fixing bacteroids. This terminal differentiation is driven by host nodule-specific cysteine-rich (NCR) peptides that orchestrate the adaptation of free-living bacteria into intracellular residents. Medicago truncatula encodes a family of >700 NCR peptides that have conserved cysteine motifs. NCR247 is a cationic peptide with four cysteines that can form two intramolecular disulfide bonds in the oxidized forms. This peptide affects Sinorhizobium meliloti transcription, translation, and cell division at low concentrations and is antimicrobial at higher concentrations. By preparing the three possible disulfide-cross-linked NCR247 regioisomers, the reduced peptide, and a variant lacking cysteines, we performed a systematic study of the effects of intramolecular disulfide cross-linking and cysteines on the activities of an NCR peptide. The relative activities of the five NCR247 variants differed strikingly among the various bioassays, suggesting that the NCR peptide-based language used by plants to control the development of their bacterial partners during symbiosis is even greater than previously recognized. These patterns indicate that certain NCR bioactivities require cysteines whereas others do not. The results also suggest that NCR247 may exert some of its effects within the cell envelope whereas other activities occur in the cytoplasm. BacA, a membrane protein that is critical for symbiosis, provides protection against all bactericidal forms of NCR247. Oxidative folding protects NCR247 from degradation by the symbiotically relevant metalloprotease HrrP (host range restriction peptidase), suggesting that disulfide bond formation may additionally stabilize NCR peptides during symbiosis.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/microbiología , Proteínas de Transporte de Membrana/genética , Péptidos/genética , Proteínas de Plantas/genética , Sinorhizobium meliloti/efectos de los fármacos , Simbiosis/genética , Secuencias de Aminoácidos , Proteínas Bacterianas/metabolismo , Cisteína/química , Disulfuros/química , Especificidad del Huésped , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fijación del Nitrógeno , Péptidos/metabolismo , Péptidos/farmacología , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/farmacología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Transducción de Señal , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/crecimiento & desarrollo , Sinorhizobium meliloti/metabolismo , Relación Estructura-Actividad
4.
PLoS Pathog ; 10(6): e1004175, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24901994

RESUMEN

YbeY, a highly conserved protein, is an RNase in E. coli and plays key roles in both processing of the critical 3' end of 16 S rRNA and in 70 S ribosome quality control under stress. These central roles account for YbeY's inclusion in the postulated minimal bacterial genome. However, YbeY is not essential in E. coli although loss of ybeY severely sensitizes it to multiple physiological stresses. Here, we show that YbeY is an essential endoribonuclease in Vibrio cholerae and is crucial for virulence, stress regulation, RNA processing and ribosome quality control, and is part of a core set of RNases essential in most representative pathogens. To understand its function, we analyzed the rRNA and ribosome profiles of a V. cholerae strain partially depleted for YbeY and other RNase mutants associated with 16 S rRNA processing; our results demonstrate that YbeY is also crucial for 16 S rRNA 3' end maturation in V. cholerae and that its depletion impedes subunit assembly into 70 S ribosomes. YbeY's importance to V. cholerae pathogenesis was demonstrated by the complete loss of mice colonization and biofilm formation, reduced cholera toxin production, and altered expression levels of virulence-associated small RNAs of a V. cholerae strain partially depleted for YbeY. Notably, the ybeY genes of several distantly related pathogens can fully complement an E. coli ΔybeY strain under various stress conditions, demonstrating the high conservation of YbeY's activity in stress regulation. Taken together, this work provides the first comprehensive exploration of YbeY's physiological role in a human pathogen, showing its conserved function across species in essential cellular processes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endorribonucleasas/metabolismo , Procesamiento de Término de ARN 3' , ARN Bacteriano/metabolismo , ARN Ribosómico/metabolismo , Estrés Fisiológico , Vibrio cholerae/enzimología , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Cólera/enzimología , Cólera/inmunología , Cólera/metabolismo , Cólera/microbiología , Toxina del Cólera/biosíntesis , Secuencia Conservada , Endorribonucleasas/química , Endorribonucleasas/genética , Regulación Bacteriana de la Expresión Génica , Inmunidad Mucosa , Mucosa Intestinal/crecimiento & desarrollo , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Ratones , Mutación , Filogenia , Vibrio cholerae/inmunología , Vibrio cholerae/patogenicidad , Vibrio cholerae/fisiología , Virulencia , Factores de Virulencia/biosíntesis
5.
Proc Natl Acad Sci U S A ; 111(9): 3561-6, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24501120

RESUMEN

The α-proteobacterium Sinorhizobium meliloti establishes a chronic intracellular infection during the symbiosis with its legume hosts. Within specialized host cells, S. meliloti differentiates into highly polyploid, enlarged nitrogen-fixing bacteroids. This differentiation is driven by host cells through the production of defensin-like peptides called "nodule-specific cysteine-rich" (NCR) peptides. Recent research has shown that synthesized NCR peptides exhibit antimicrobial activity at high concentrations but cause bacterial endoreduplication at sublethal concentrations. We leveraged synchronized S. meliloti populations to determine how treatment with a sublethal NCR peptide affects the cell cycle and physiology of bacteria at the molecular level. We found that at sublethal levels a representative NCR peptide specifically blocks cell division and antagonizes Z-ring function. Gene-expression profiling revealed that the cell division block was produced, in part, through the substantial transcriptional response elicited by sublethal NCR treatment that affected ∼15% of the genome. Expression of critical cell-cycle regulators, including ctrA, and cell division genes, including genes required for Z-ring function, were greatly attenuated in NCR-treated cells. In addition, our experiments identified important symbiosis functions and stress responses that are induced by sublethal levels of NCR peptides and other antimicrobial peptides. Several of these stress-response pathways also are found in related α-proteobacterial pathogens and might be used by S. meliloti to sense host cues during infection. Our data suggest a model in which, in addition to provoking stress responses, NCR peptides target intracellular regulatory pathways to drive S. meliloti endoreduplication and differentiation during symbiosis.


Asunto(s)
Ciclo Celular/fisiología , Fabaceae/microbiología , Regulación de la Expresión Génica de las Plantas/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Sinorhizobium meliloti/fisiología , Simbiosis , ADN Complementario/genética , Fabaceae/metabolismo , Perfilación de la Expresión Génica , Análisis por Micromatrices , Modelos Biológicos , Reacción en Cadena de la Polimerasa , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/metabolismo
6.
J Bacteriol ; 196(2): 436-44, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24214946

RESUMEN

yaiW is a previously uncharacterized gene found in enteric bacteria that is of particular interest because it is located adjacent to the sbmA gene, whose bacA ortholog is required for Sinorhizobium meliloti symbiosis and Brucella abortus pathogenesis. We show that yaiW is cotranscribed with sbmA in Escherichia coli and Salmonella enterica serovar Typhi and Typhimurium strains. We present evidence that the YaiW is a palmitate-modified surface exposed outer membrane lipoprotein. Since BacA function affects the very-long-chain fatty acid (VLCFA) modification of S. meliloti and B. abortus lipid A, we tested whether SbmA function might affect either the fatty acid modification of the YaiW lipoprotein or the fatty acid modification of enteric lipid A but found that it did not. Interestingly, we did observe that E. coli SbmA suppresses deficiencies in the VLCFA modification of the lipopolysaccharide of an S. meliloti bacA mutant despite the absence of VLCFA in E. coli. Finally, we found that both YaiW and SbmA positively affect the uptake of proline-rich Bac7 peptides, suggesting a possible connection between their cellular functions.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Brucella abortus/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genes Supresores , Lipoproteínas/genética , Pruebas de Sensibilidad Microbiana , Salmonella typhimurium/genética , Sinorhizobium meliloti/genética , Transcripción Genética , Transferasas/genética , Transferasas/metabolismo
7.
FEMS Microbiol Rev ; 37(3): 364-83, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22998605

RESUMEN

Rhizobial soil bacteria can form a symbiosis with legumes in which the bacteria fix atmospheric nitrogen into ammonia that can be utilized by the host. The plant, in turn, supplies the rhizobia with a carbon source. After infecting the host cell, the bacteria differentiate into a distinct bacteroid form, which is able to fix nitrogen. The bacterial BacA protein is essential for bacteroid differentiation in legumes producing nodule-specific cysteine-rich peptides (NCRs), which induce the terminal differentiation of the bacteria into bacteroids. NCRs are antimicrobial peptides similar to mammalian defensins, which are important for the eukaryotic response to invading pathogens. The BacA protein is essential for rhizobia to survive the NCR peptide challenge. Similarities in the lifestyle of intracellular pathogenic bacteria suggest that host factors might also be important for inducing chronic infections associated with Brucella abortus and Mycobacterium tuberculosis. Moreover, rhizobial lipopolysaccharide is modified with an unusual fatty acid, which plays an important role in protecting the bacteria from environmental stresses. Mutants defective in the biosynthesis of this fatty acid display bacteroid development defects within the nodule. In this review, we will focus on these key components, which affect rhizobial bacteroid development and survival.


Asunto(s)
Fabaceae/microbiología , Fabaceae/fisiología , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/microbiología , Nódulos de las Raíces de las Plantas/fisiología , Simbiosis , Amoníaco/metabolismo , Carbono/metabolismo , Fabaceae/metabolismo , Fijación del Nitrógeno , Rhizobium/crecimiento & desarrollo , Rhizobium/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo
8.
Int J Microbiol ; 2010: 124509, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21151694

RESUMEN

Brucella species are the causative agents of one of the most prevalent zoonotic diseases: brucellosis. Infections by Brucella species cause major economic losses in agriculture, leading to abortions in infected animals and resulting in a severe, although rarely lethal, debilitating disease in humans. Brucella species persist as intracellular pathogens that manage to effectively evade recognition by the host's immune system. Sugar-modified components in the Brucella cell envelope play an important role in their host interaction. Brucella lipopolysaccharide (LPS), unlike Escherichia coli LPS, does not trigger the host's innate immune system. Brucella produces cyclic ß-1,2-glucans, which are important for targeting them to their replicative niche in the endoplasmic reticulum within the host cell. This paper will focus on the role of LPS and cyclic ß-1,2-glucans in Brucella-mammalian infections and discuss the use of mutants, within the biosynthesis pathway of these cell envelope structures, in vaccine development.

9.
Microbiology (Reading) ; 156(Pt 9): 2702-2713, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20507886

RESUMEN

BacA proteins play key roles in the chronic intracellular infections of Sinorhizobium meliloti, Brucella abortus and Mycobacterium tuberculosis within their respective hosts. S. meliloti, B. abortus and M. tuberculosis BacA-deficient mutants have increased resistance to the thiazole-modified peptide bleomycin. BacA has been previously hypothesized, but not experimentally verified, to be involved in bleomycin uptake. In this paper, we show that a BacA-dependent mechanism is the major route of bleomycin internalization in S. meliloti. We also determined that the B. abortus and S. meliloti BacA proteins are functional homologues and that the B. abortus BacA protein is involved in the uptake of both bleomycin and proline-rich peptides. Our findings also provide evidence that there is a second, BacA-independent minor mechanism for bleomycin internalization in S. meliloti. We determined that the BacA-dependent and -independent mechanisms of bleomycin uptake are energy-dependent, consistent with both mechanisms of bleomycin uptake involving transport systems.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sinorhizobium meliloti/metabolismo , Tiazoles/metabolismo , Proteínas Bacterianas/genética , Transporte Biológico , Bleomicina/metabolismo , Sinorhizobium meliloti/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...