Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Discov Nano ; 19(1): 68, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38625606

The green synthesis of metallic nanoparticles is attributable towards diverse applications in various fields, recently. In this research, we report simple and eco-friendly synthesis of chromium oxide (Cr2O3) nanoparticles using the fruit extract of Phyllanthus emblica as a reducing and capping agent. The absorbance peaks at 350 nm and 450 nm validated the nanoparticle formation in UV-visible spectrum. FTIR spectrum revealed the nature of functional groups. The crystalline properties of nanoparticles were ascertained by XRD analysis. EDX spectrum corroborated the elemental composition of nanoparticles in which chromium and oxygen constituted 68% of total weight. SEM images demonstrated agglomeration of nanoparticles resulting in the formation of large irregularly shaped flakes. Cr2O3 nanoparticles demonstrated excellent antimicrobial properties against 11 bacterial isolates and 1 fungal isolate. The largest inhibition zone (53 mm) was measured against A. baumannii while the smallest inhibition zone (26 mm) was recorded against S. aureus. Minimum inhibitory concentration (MIC) values were < 1 µg/ml for all microbes. However, the synthesized nanoparticles did not reveal synergism with any of the selected antibiotics (FICI values > 1). Nanoparticles possessed potent anti-biofilm powers with maximum (77%) inhibition of E. coli biofilms and minimum (45%) inhibition of S. enterica biofilms. Photocatalytic activity of Cr2O3 nanoparticles was evaluated to determine their efficacy in environmental bioremediation. Outcomes demonstrated degradation of methyl red (84%) but not of methylene blue dye. Furthermore, the Cr2O3 nanoparticles displayed considerable antioxidant (43%) as well as anti-inflammatory (44%) potentials. Hence, the present study accounts for the versatile applications of P. emblica-mediated Cr2O3 nanoparticles which could be pursued for future biomedical and environmental applications.

2.
Molecules ; 28(18)2023 Sep 07.
Article En | MEDLINE | ID: mdl-37764280

Green approaches for nanoparticle synthesis have emerged as biocompatible, economical, and environment-friendly alternatives to counteract the menace of microbial drug resistance. Recently, the utilization of honey as a green source to synthesize Fe2O3-NPs has been introduced, but its antibacterial activity against one of the opportunistic MDR pathogens, Klebsiella pneumoniae, has not been explored. Therefore, this study employed Apis mellifera honey as a reducing and capping agent for the synthesis of iron oxide nanoparticles (Fe2O3-NPs). Subsequent to the characterization of nanoparticles, their antibacterial, antioxidant, and anti-inflammatory properties were appraised. In UV-Vis spectroscopic analysis, the absorption band ascribed to the SPR peak was observed at 350 nm. XRD analysis confirmed the crystalline nature of Fe2O3-NPs, and the crystal size was deduced to be 36.2 nm. Elemental analysis by EDX validated the presence of iron coupled with oxygen in the nanoparticle composition. In ICP-MS, the highest concentration was of iron (87.15 ppm), followed by sodium (1.49 ppm) and other trace elements (<1 ppm). VSM analysis revealed weak magnetic properties of Fe2O3-NPs. Morphological properties of Fe2O3-NPs revealed by SEM demonstrated that their average size range was 100-150 nm with a non-uniform spherical shape. The antibacterial activity of Fe2O3-NPs was ascertained against 30 clinical isolates of Klebsiella pneumoniae, with the largest inhibition zone recorded being 10 mm. The MIC value for Fe2O3-NPs was 30 µg/mL. However, when mingled with three selected antibiotics, Fe2O3-NPs did not affect any antibacterial activity. Momentous antioxidant (IC50 = 22 µg/mL) and anti-inflammatory (IC50 = 70 µg/mL) activities of Fe2O3-NPs were discerned in comparison with the standard at various concentrations. Consequently, honey-mediated Fe2O3-NP synthesis may serve as a substitute for orthodox antimicrobial drugs and may be explored for prospective biomedical applications.


Honey , Bees , Animals , Antioxidants/pharmacology , Prospective Studies , Anti-Bacterial Agents/pharmacology , Iron , Klebsiella pneumoniae , Magnetic Iron Oxide Nanoparticles
3.
Appl Microbiol Biotechnol ; 104(9): 3729-3743, 2020 May.
Article En | MEDLINE | ID: mdl-32172324

Heavy metal pollution is a direct consequence of the extensive utilization of heavy metals in various industrial processes. The persistence and nondegradability of heavy metals cause them to bioaccumulate in nature, and when they come in direct contact with the pristine environment, they not only contaminate it severely but also pose dire consequences to the health of all living forms on earth, including humans. Chromium (Cr) is one of the heavy metals which has been extensively used in various industrial processes such as mining, alloy manufacturing, tanning of hides and skins, pigment production, etc. However, it is regarded as a priority pollutant due to its highly toxic, teratogenic, mutagenic, and carcinogenic nature, and the U.S. Environmental Protection Agency (EPA) also categorized it into group "A" human carcinogen. In contrast to water-soluble hexavalent chromium (Cr6+), its reduced form, trivalent chromium (Cr3+), is relatively benign and readily precipitated at environmental pH. Thus, bioremediation of Cr6+ through microorganisms including bacteria, yeast, and algae provides a promising approach to decontaminate a metal-polluted environment. This review describes an overview of the microbial reduction of Cr6+, resistance mechanism, and the antioxidant profiling exhibited by these microorganisms when exposed to Cr6+. It also describes the pilot-scale study of the successive use of bacterial, fungal, and algal strains and the subsequent use of microbially purified water for the cultivation of plant growth. Multiple metal-resistant microorganisms are a good bioresource for green chemistry to eradicate environmental Cr6+. KEY POINTS: • Hexavalent chromium (Cr6+) is highly toxic for living organisms including humans. • Microbial Cr resistance is mediated at the genetic, proteomic, and molecular levels. • Successive use of microorganisms is the best strategy to exterminate Cr6+from the environment.


Bacteria/metabolism , Chromium/metabolism , Fungi/metabolism , Wastewater/chemistry , Water Purification/methods , Biodegradation, Environmental , Cyanobacteria/metabolism , Water Pollution, Chemical/prevention & control
4.
Biochem Genet ; 54(5): 676-84, 2016 Oct.
Article En | MEDLINE | ID: mdl-27263109

Coronary artery disease (CAD) is one of the leading public health problems associated with mortality and morbidity in the world. It is a complex disorder influenced by both genetic and environmental factors. Atherosclerosis and elevated levels of plasma cholesterol contribute to increased risk for CAD. Other risk factors include age, hypertension, obesity, diabetes, smoking, and family history. Previous genetic studies have identified multiple polymorphisms in various genes to be associated with the risk of CAD in different populations. We aimed to examine the association of MRAS/rs9818870 and C12orf43/rs2258287 polymorphisms with the risk of CAD in a Pakistani sample. A total of 200 samples (100 cases and 100 controls) was analyzed by Allele-specific PCR. Genotypes were determined by agarose gel electrophoresis. In the current study, locus C12orf43/rs2258287 was found to be associated with the risk of CAD in the studied Pakistani cohort (OR 0.18; CI 0.08-0.37; p = 0.0001) while no association was observed for MRAS/rs9818870 (OR 1.34; CI 0.65-2.76; p = 0.42). In conclusion, the rs2258287 SNP may play an important role in the progression of CAD in the Pakistani subjects. However, future studies should be done on a larger sample size to fully establish its exact role in CAD.


Coronary Artery Disease/genetics , Polymorphism, Single Nucleotide , Proteins/genetics , Adult , Disease Progression , Female , Gene Frequency , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Pakistan , ras Proteins/genetics
5.
Circ Res ; 117(5): 401-12, 2015 Aug 14.
Article En | MEDLINE | ID: mdl-26078285

RATIONALE: Monitoring and controlling cardiac myocyte activity with optogenetic tools offer exciting possibilities for fundamental and translational cardiovascular research. Genetically encoded voltage indicators may be particularly attractive for minimal invasive and repeated assessments of cardiac excitation from the cellular to the whole heart level. OBJECTIVE: To test the hypothesis that cardiac myocyte-targeted voltage-sensitive fluorescence protein 2.3 (VSFP2.3) can be exploited as optogenetic tool for the monitoring of electric activity in isolated cardiac myocytes and the whole heart as well as function and maturity in induced pluripotent stem cell-derived cardiac myocytes. METHODS AND RESULTS: We first generated mice with cardiac myocyte-restricted expression of VSFP2.3 and demonstrated distinct localization of VSFP2.3 at the t-tubulus/junctional sarcoplasmic reticulum microdomain without any signs for associated pathologies (assessed by echocardiography, RNA-sequencing, and patch clamping). Optically recorded VSFP2.3 signals correlated well with membrane voltage measured simultaneously by patch clamping. The use of VSFP2.3 for human action potential recordings was confirmed by simulation of immature and mature action potentials in murine VSFP2.3 cardiac myocytes. Optical cardiograms could be monitored in whole hearts ex vivo and minimally invasively in vivo via fiber optics at physiological heart rate (10 Hz) and under pacing-induced arrhythmia. Finally, we reprogrammed tail-tip fibroblasts from transgenic mice and used the VSFP2.3 sensor for benchmarking functional and structural maturation in induced pluripotent stem cell-derived cardiac myocytes. CONCLUSIONS: We introduce a novel transgenic voltage-sensor model as a new method in cardiovascular research and provide proof of concept for its use in optogenetic sensing of physiological and pathological excitation in mature and immature cardiac myocytes in vitro and in vivo.


Membrane Potentials/physiology , Myocytes, Cardiac/physiology , Optogenetics/methods , Animals , Humans , Mice , Mice, Transgenic , Voltage-Sensitive Dye Imaging/methods
...