Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1348853, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562410

RESUMEN

Introduction: Obesity, prevalent in approximately 80% of Qatar's adult population, increases the risk of complications like type 2 diabetes and cardiovascular diseases. Predictive biomarkers are crucial for preventive strategies. Salivary α-amylase activity (sAAa) inversely correlates with obesity and insulin resistance in adults and children. However, the connection between sAAa and cardiometabolic risk factors or chronic low-grade inflammation markers remains unclear. This study explores the association between serum sAAa and adiposity markers related to cardiovascular diseases, as well as markers indicative of chronic low-grade inflammation. Methods: Serum samples and clinical data of 1500 adult, non-diabetic, Overweight/Obese participants were obtained from Qatar Biobank (QBB). We quantified sAAa and C reactive protein (CRP) levels with an autoanalyzer. Cytokines, adipokines, and adiponectin of a subset of 228 samples were quantified using a bead-based multiplex assay. The associations between the sAAa and the adiposity indices and low-grade inflammatory protein CRP and multiple cytokines were assessed using Pearson's correlation and adjusted linear regression. Results: The mean age of the participants was 36 ± 10 years for both sexes of which 76.6% are women. Our analysis revealed a significant linear association between sAAa and adiposity-associated biomarkers, including body mass index ß -0.032 [95% CI -0.049 to -0.05], waist circumference ß -0.05 [95% CI -0.09 to -0.02], hip circumference ß -0.052 [95% CI -0.087 to -0.017], and HDL ß 0.002 [95% CI 0.001 to 0.004], albeit only in women. Additionally, sAAa demonstrated a significant positive association with adiponectin ß 0.007 [95% CI 0.001 to 0.01]while concurrently displaying significant negative associations with CRP ß -0.02 [95% CI -0.044 to -0.0001], TNF-α ß -0.105 [95% CI -0.207 to -0.004], IL-6 ß [95% CI -0.39 -0.75 to -0.04], and ghrelin ß -5.95 [95% CI -11.71 to -0.20], specifically within the female population. Conclusion: Our findings delineate significant associations between sAAa and markers indicative of cardiovascular disease risk and inflammation among overweight/obese adult Qatari females. Subsequent investigations are warranted to elucidate the nuances of these gender-specific associations comprehensively.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , alfa-Amilasas Salivales , Masculino , Adulto , Niño , Humanos , Femenino , Persona de Mediana Edad , Sobrepeso , Adiponectina , Diabetes Mellitus Tipo 2/complicaciones , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/complicaciones , Obesidad/metabolismo , Biomarcadores , Inflamación/metabolismo , Citocinas
2.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396924

RESUMEN

Diabetes is recognized as a risk factor for cognitive decline, but the underlying mechanisms remain elusive. We aimed to identify the metabolic pathways altered in diabetes-associated cognitive decline (DACD) using untargeted metabolomics. We conducted liquid chromatography-mass spectrometry-based untargeted metabolomics to profile serum metabolite levels in 100 patients with type 2 diabetes (T2D) (54 without and 46 with DACD). Multivariate statistical tools were used to identify the differentially expressed metabolites (DEMs), and enrichment and pathways analyses were used to identify the signaling pathways associated with the DEMs. The receiver operating characteristic (ROC) analysis was employed to assess the diagnostic accuracy of a set of metabolites. We identified twenty DEMs, seven up- and thirteen downregulated in the DACD vs. DM group. Chemometric analysis revealed distinct clustering between the two groups. Metabolite set enrichment analysis found significant enrichment in various metabolite sets, including galactose metabolism, arginine and unsaturated fatty acid biosynthesis, citrate cycle, fructose and mannose, alanine, aspartate, and glutamate metabolism. Pathway analysis identified six significantly altered pathways, including arginine and unsaturated fatty acid biosynthesis, and the metabolism of the citrate cycle, alanine, aspartate, glutamate, a-linolenic acid, and glycerophospholipids. Classifier models with AUC-ROC > 90% were developed using individual metabolites or a combination of individual metabolites and metabolite ratios. Our study provides evidence of perturbations in multiple metabolic pathways in patients with DACD. The distinct DEMs identified in this study hold promise as diagnostic biomarkers for DACD patients.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Estudios Transversales , Metaboloma , Ácido Aspártico/metabolismo , Metabolómica , Alanina/metabolismo , Arginina/metabolismo , Citratos , Glutamatos/metabolismo , Ácidos Grasos Insaturados
3.
PLoS One ; 19(2): e0299166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38354208

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0272091.].

4.
Front Neurol ; 14: 1256745, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107644

RESUMEN

Background: Dementia is a debilitating neurological disease affecting millions of people worldwide. The exact mechanisms underlying the initiation and progression of the disease remain to be fully defined. There is an increasing body of evidence for the role of immune dysregulation in the pathogenesis of dementia, where blood-borne autoimmune antibodies have been studied as potential markers associated with pathological mechanisms of dementia. Methods: This study included plasma from 50 cognitively normal individuals, 55 subjects with MCI (mild cognitive impairment), and 22 subjects with dementia. Autoantibody profiling for more than 1,600 antigens was performed using a high throughput microarray platform to identify differentially expressed autoantibodies in MCI and dementia. Results: The differential expression analysis identified 33 significantly altered autoantibodies in the plasma of patients with dementia compared to cognitively normal subjects, and 38 significantly altered autoantibodies in the plasma of patients with dementia compared to subjects with MCI. And 20 proteins had significantly altered autoantibody responses in MCI compared to cognitively normal individuals. Five autoantibodies were commonly dysregulated in both dementia and MCI, including anti-CAMK2A, CKS1B, ETS2, MAP4, and NUDT2. Plasma levels of anti-ODF3, E6, S100P, and ARHGDIG correlated negatively with the cognitive performance scores (MoCA) (r2 -0.56 to -0.42, value of p < 0.001). Additionally, several proteins targeted by autoantibodies dysregulated in dementia were significantly enriched in the neurotrophin signaling pathway, axon guidance, cholinergic synapse, long-term potentiation, apoptosis, glycolysis and gluconeogenesis. Conclusion: We have shown multiple dysregulated autoantibodies in the plasma of subjects with MCI and dementia. The corresponding proteins for these autoantibodies are involved in neurodegenerative pathways, suggesting a potential impact of autoimmunity on the etiology of dementia and the possible benefit for future therapeutic approaches. Further investigations are warranted to validate our findings.

5.
Front Mol Neurosci ; 16: 1222506, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908488

RESUMEN

Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by defects in two core domains, social/communication skills and restricted/repetitive behaviors or interests. There is no approved biomarker for ASD diagnosis, and the current diagnostic method is based on clinical manifestation, which tends to vary vastly between the affected individuals due to the heterogeneous nature of ASD. There is emerging evidence that supports the implication of the immune system in ASD, specifically autoimmunity; however, the role of autoantibodies in ASD children is not yet fully understood. Materials and methods: In this study, we screened serum samples from 93 cases with ASD and 28 healthy controls utilizing high-throughput KoRectly Expressed (KREX) i-Ome protein-array technology. Our goal was to identify autoantibodies with differential expressions in ASD and to gain insights into the biological significance of these autoantibodies in the context of ASD pathogenesis. Result: Our autoantibody expression analysis identified 29 differential autoantibodies in ASD, 4 of which were upregulated and 25 downregulated. Subsequently, gene ontology (GO) and network analysis showed that the proteins of these autoantibodies are expressed in the brain and involved in axonal guidance, chromatin binding, and multiple metabolic pathways. Correlation analysis revealed that these autoantibodies negatively correlate with the age of ASD subjects. Conclusion: This study explored autoantibody reactivity against self-antigens in ASD individuals' serum using a high-throughput assay. The identified autoantibodies were reactive against proteins involved in axonal guidance, synaptic function, amino acid metabolism, fatty acid metabolism, and chromatin binding.

6.
Front Physiol ; 14: 1203723, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520825

RESUMEN

Background: Coronavirus disease (COVID-19) manifests many clinical symptoms, including an exacerbated immune response and cytokine storm. Autoantibodies in COVID-19 may have severe prodromal effects that are poorly understood. The interaction between these autoantibodies and self-antigens can result in systemic inflammation and organ dysfunction. However, the role of autoantibodies in COVID-19 complications has yet to be fully understood. Methods: The current investigation screened two independent cohorts of 97 COVID-19 patients [discovery (Disc) cohort from Qatar (case = 49 vs. control = 48) and replication (Rep) cohort from New York (case = 48 vs. control = 28)] utilizing high-throughput KoRectly Expressed (KREX) Immunome protein-array technology. Total IgG autoantibody responses were evaluated against 1,318 correctly folded and full-length human proteins. Samples were randomly applied on the precoated microarray slides for 2 h. Cy3-labeled secondary antibodies were used to detect IgG autoantibody response. Slides were scanned at a fixed gain setting using the Agilent fluorescence microarray scanner, generating a 16-bit TIFF file. Group comparisons were performed using a linear model and Fisher's exact test. Differentially expressed proteins were used for KEGG and WIKIpathway annotation to determine pathways in which the proteins of interest were significantly over-represented. Results and conclusion: Autoantibody responses to 57 proteins were significantly altered in the COVID-19 Disc cohort compared to healthy controls (p ≤ 0.05). The Rep cohort had altered autoantibody responses against 26 proteins compared to non-COVID-19 ICU patients who served as controls. Both cohorts showed substantial similarities (r 2 = 0.73) and exhibited higher autoantibody responses to numerous transcription factors, immunomodulatory proteins, and human disease markers. Analysis of the combined cohorts revealed elevated autoantibody responses against SPANXN4, STK25, ATF4, PRKD2, and CHMP3 proteins in COVID-19 patients. The sequences for SPANXN4 and STK25 were cross-validated using sequence alignment tools. ELISA and Western blot further verified the autoantigen-autoantibody response of SPANXN4. SPANXN4 is essential for spermiogenesis and male fertility, which may predict a potential role for this protein in COVID-19-associated male reproductive tract complications, and warrants further research.

7.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37511368

RESUMEN

Excess hepatic lipid accumulation is the hallmark of non-alcoholic fatty liver disease (NAFLD), for which no medication is currently approved. However, glucagon-like peptide-1 receptor agonists (GLP-1RAs), already approved for treating type 2 diabetes, have lately emerged as possible treatments. Herein we aim to investigate how the GLP-1RA exendin-4 (Ex-4) affects the microRNA (miRNAs) expression profile using an in vitro model of steatosis. Total RNA, including miRNAs, was isolated from control, steatotic, and Ex-4-treated steatotic cells and used for probing a panel of 799 highly curated miRNAs using NanoString technology. Enrichment pathway analysis was used to find the signaling pathways and cellular functions associated with the differentially expressed miRNAs. Our data shows that Ex-4 reversed the expression of a set of miRNAs. Functional enrichment analysis highlighted many relevant signaling pathways and cellular functions enriched in the differentially expressed miRNAs, including hepatic fibrosis, insulin receptor, PPAR, Wnt/ß-Catenin, VEGF, and mTOR receptor signaling pathways, fibrosis of the liver, cirrhosis of the liver, proliferation of hepatic stellate cells, diabetes mellitus, glucose metabolism disorder and proliferation of liver cells. Our findings suggest that miRNAs may play essential roles in the processes driving steatosis reduction in response to GLP-1R agonists, which warrants further functional investigation.


Asunto(s)
Diabetes Mellitus Tipo 2 , MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Humanos , Exenatida/farmacología , MicroARNs/genética , MicroARNs/uso terapéutico , Células Hep G2 , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Péptido 1 Similar al Glucagón/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Cirrosis Hepática , Receptor del Péptido 1 Similar al Glucagón/genética
8.
Int J Mol Sci ; 24(9)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37175824

RESUMEN

Dementia is a progressive and debilitating neurological disease that affects millions of people worldwide. Identifying the minimally invasive biomarkers associated with dementia that could provide insights into the disease pathogenesis, improve early diagnosis, and facilitate the development of effective treatments is pressing. Proteomic studies have emerged as a promising approach for identifying the protein biomarkers associated with dementia. This pilot study aimed to investigate the plasma proteome profile and identify a panel of various protein biomarkers for dementia. We used a high-throughput proximity extension immunoassay to quantify 1090 proteins in 122 participants (22 with dementia, 64 with mild cognitive impairment (MCI), and 36 controls with normal cognitive function). Limma-based differential expression analysis reported the dysregulation of 61 proteins in the plasma of those with dementia compared with controls, and machine learning algorithms identified 17 stable diagnostic biomarkers that differentiated individuals with AUC = 0.98 ± 0.02. There was also the dysregulation of 153 plasma proteins in individuals with dementia compared with those with MCI, and machine learning algorithms identified 8 biomarkers that classified dementia from MCI with an AUC of 0.87 ± 0.07. Moreover, multiple proteins selected in both diagnostic panels such as NEFL, IL17D, WNT9A, and PGF were negatively correlated with cognitive performance, with a correlation coefficient (r2) ≤ -0.47. Gene Ontology (GO) and pathway analysis of dementia-associated proteins implicated immune response, vascular injury, and extracellular matrix organization pathways in dementia pathogenesis. In conclusion, the combination of high-throughput proteomics and machine learning enabled us to identify a blood-based protein signature capable of potentially differentiating dementia from MCI and cognitively normal controls. Further research is required to validate these biomarkers and investigate the potential underlying mechanisms for the development of dementia.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Proteómica , Proyectos Piloto , Biomarcadores
9.
Neurobiol Dis ; 182: 106147, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37178811

RESUMEN

Coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has sparked a global pandemic with severe complications and high morbidity rate. Neurological symptoms in COVID-19 patients, and neurological sequelae post COVID-19 recovery have been extensively reported. Yet, neurological molecular signature and signaling pathways that are affected in the central nervous system (CNS) of COVID-19 severe patients remain still unknown and need to be identified. Plasma samples from 49 severe COVID-19 patients, 50 mild COVID-19 patients, and 40 healthy controls were subjected to Olink proteomics analysis of 184 CNS-enriched proteins. By using a multi-approach bioinformatics analysis, we identified a 34-neurological protein signature for COVID-19 severity and unveiled dysregulated neurological pathways in severe cases. Here, we identified a new neurological protein signature for severe COVID-19 that was validated in different independent cohorts using blood and postmortem brain samples and shown to correlate with neurological diseases and pharmacological drugs. This protein signature could potentially aid the development of prognostic and diagnostic tools for neurological complications in post-COVID-19 convalescent patients with long term neurological sequelae.


Asunto(s)
COVID-19 , Enfermedades del Sistema Nervioso , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Enfermedades del Sistema Nervioso/etiología , Sistema Nervioso Central , Encéfalo
10.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108604

RESUMEN

Autism spectrum disorder (ASD) is an umbrella term that encompasses several disabling neurodevelopmental conditions. These conditions are characterized by impaired manifestation in social and communication skills with repetitive and restrictive behaviors or interests. Thus far, there are no approved biomarkers for ASD screening and diagnosis; also, the current diagnosis depends heavily on a physician's assessment and family's awareness of ASD symptoms. Identifying blood proteomic biomarkers and performing deep blood proteome profiling could highlight common underlying dysfunctions between cases of ASD, given its heterogeneous nature, thus laying the foundation for large-scale blood-based biomarker discovery studies. This study measured the expression of 1196 serum proteins using proximity extension assay (PEA) technology. The screened serum samples included ASD cases (n = 91) and healthy controls (n = 30) between 6 and 15 years of age. Our findings revealed 251 differentially expressed proteins between ASD and healthy controls, of which 237 proteins were significantly upregulated and 14 proteins were significantly downregulated. Machine learning analysis identified 15 proteins that could be biomarkers for ASD with an area under the curve (AUC) = 0.876 using support vector machine (SVM). Gene Ontology (GO) analysis of the top differentially expressed proteins (TopDE) and weighted gene co-expression analysis (WGCNA) revealed dysregulation of SNARE vesicular transport and ErbB pathways in ASD cases. Furthermore, correlation analysis showed that proteins from those pathways correlate with ASD severity. Further validation and verification of the identified biomarkers and pathways are warranted.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Trastorno del Espectro Autista/genética , Proyectos Piloto , Proteómica , Biomarcadores/metabolismo , Proteoma/metabolismo
11.
Front Public Health ; 11: 1086771, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37089491

RESUMEN

Introduction: The triglyceride-glucose (TyG)-driven indices, incorporating obesity indices, have been proposed as reliable markers of insulin resistance and related comorbidities such as diabetes. This study evaluated the effectiveness of these indices in detecting prediabetes in normal-weight individuals from a Middle Eastern population. Methods: Using the data of 5,996 adult Qatari participants from the Qatar Biobank cohort, we employed adjusted logistic regression to assess the ability of various obesity and triglyceride-related indices to detect prediabetes in normal-weight (18.5 ≤ BMI <25 kg/m2) adults (≥18 years). Results: Of the normal-weight adults, 13.62% had prediabetes. TyG-waist-to-height ratio (TyG-WHTR) was significantly associated with prediabetes among normal-weight men [OR per 1-SD 2.68; 95% CI (1.67-4.32)] and women [OR per 1-SD 2.82; 95% CI (1.61-4.94)]. Compared with other indices, TyG-WHTR had the highest area under the curve (AUC) value for prediabetes in men [AUC: 0.76, 95% CI (0.70-0.81)] and women [AUC: 0.73, 95% CI (0.66-0.80)], and performed significantly higher than other indices (p < 0.05) in detecting prediabetes in men. Tyg-WHTR shared similar diagnostic values as fasting plasma glucose (FPG). Discussion: Our findings suggest that the TyG-WHTR index could be a better indicator of prediabetes for general clinical usage in normal weight Qatari adult men than other obesity and TyG-related indices. TyG-WHTR can help identify a person's risk for developing prediabetes in both men and women when combined with FPG results.


Asunto(s)
Estado Prediabético , Masculino , Humanos , Adulto , Femenino , Estado Prediabético/diagnóstico , Glucosa , Estudios Transversales , Triglicéridos , Obesidad/diagnóstico , Obesidad/epidemiología
12.
Front Cardiovasc Med ; 9: 1024790, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277770

RESUMEN

Stroke is the second leading cause of global mortality and continued efforts aim to identify predictive, diagnostic, or prognostic biomarkers to reduce the disease burden. Circulating microRNAs (miRNAs) have emerged as potential biomarkers in stroke. We performed comprehensive circulating miRNA profiling of ischemic stroke patients with or without type 2 diabetes mellitus (T2DM), an important risk factor associated with worse clinical outcomes in stroke. Serum samples were collected within 24 h of acute stroke diagnosis and circulating miRNAs profiled using RNA-Seq were compared between stroke patients with T2DM (SWDM; n = 92) and those without T2DM (SWoDM; n = 98). Our analysis workflow involved random allocation of study cohorts into discovery (n = 96) and validation (n = 94) datasets. Five miRNAs were found to be differentially regulated in SWDM compared to SWoDM patients. Hsa-miR-361-3p and -664a-5p were downregulated, whereas miR-423-3p, -140-5p, and -17-3p were upregulated. We also explored the gene targets of these miRNAs and investigated the downstream pathways associated with them to decipher the potential pathways impacted in stroke with diabetes as comorbidity. Overall, our novel findings provide important insights into the differentially regulated miRNAs, their associated pathways and potential utilization for clinical benefits in ischemic stroke patients with diabetes.

13.
Biomedicines ; 10(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36289914

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a common liver lesion that is untreatable with medications. Glucagon-like peptide-1 receptor (GLP-1R) agonists have recently emerged as a potential NAFLD pharmacotherapy. However, the molecular mechanisms underlying these drugs' beneficial effects are not fully understood. Using Fourier transform infrared (FTIR) spectroscopy, we sought to investigate the biochemical changes in a steatosis cell model treated or not with the GLP-1R agonist Exendin-4 (Ex-4). HepG2 cells were made steatotic with 400 µM of oleic acid and then treated with 200 nM Ex-4 in order to reduce lipid accumulation. We quantified steatosis using the Oil Red O staining method. We investigated the biochemical alterations induced by steatosis and Ex-4 treatment using Fourier transform infrared (FTIR) spectroscopy and chemometric analyses. Analysis of the Oil Red O staining showed that Ex-4 significantly reduces steatosis. This reduction was confirmed by FTIR analysis, as the phospholipid band (C=O) at 1740 cm-1 in Ex-4 treated cells is significantly decreased compared to steatotic cells. The principal component analysis score plots for both the lipid and protein regions showed that the untreated and Ex-4-treated samples, while still separated, are clustered close to each other, far from the steatotic cells. The biochemical and structural changes induced by OA-induced lipotoxicity are at least partially reversed upon Ex-4 treatment. FTIR and chemometric analyses revealed that Ex-4 significantly reduces OA-induced lipid accumulation, and Ex-4 also restored the lipid and protein biochemical alterations caused by lipotoxicity-induced oxidative stress. In combination with chemometric analyses, FTIR spectroscopy may offer new approaches for investigating the mechanisms underpinning NAFLD.

14.
PLoS One ; 17(8): e0272091, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35944004

RESUMEN

INTRODUCTION: Cystic fibrosis (CF) is a hereditary autosomal recessive disorder caused by a range of mutations in the CF Transmembrane Conductance Regulator (CFTR) gene. This gene encodes the CFTR protein, which acts as a chloride channel activated by cyclic AMP (cAMP). This meta-analysis aimed to compare the responsiveness of induced pluripotent stem cells (iPSCs) to cAMP analogues to that of commonly used animal models. METHODS: Databases searched included PubMed, Scopus, and Medline from inception to January 2020. A total of 8 and 3 studies, respectively, for animal models and iPSCs, were analyzed. Studies were extracted for investigating cAMP-stimulated anion transport by measuring the short circuit current (Isc) of chloride channels in different animal models and iPSC systems We utilized an inverse variance heterogeneity model for synthesis. RESULTS: Our analysis showed considerable heterogeneity in the mean Isc value in both animal models and iPSCs studies (compared to their WT counterparts), and both suffer from variable responsiveness based on the nature of the underlying model. There was no clear advantage of one over the other. CONCLUSIONS: Studies on both animal and iPSCs models generated considerable heterogeneity. Given the potential of iPSC-derived models to study different diseases, we recommend paying more attention to developing reproducible models of iPSC as it has potential if adequately developed.


Asunto(s)
Fibrosis Quística , Células Madre Pluripotentes Inducidas , Animales , Canales de Cloruro/metabolismo , AMP Cíclico/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Animales
15.
Int J Mol Sci ; 23(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35682821

RESUMEN

Cognitive dysfunctions such as mild cognitive impairment (MCI), Alzheimer's disease (AD), and other forms of dementia are recognized as common comorbidities of type 2 diabetes mellitus (T2DM). Currently, there are no disease-modifying therapies or definitive clinical diagnostic and prognostic tools for dementia, and the mechanisms underpinning the link between T2DM and cognitive dysfunction remain equivocal. Some of the suggested pathophysiological mechanisms underlying cognitive decline in diabetes patients include hyperglycemia, insulin resistance and altered insulin signaling, neuroinflammation, cerebral microvascular injury, and buildup of cerebral amyloid and tau proteins. Given the skyrocketing global rates of diabetes and neurodegenerative disorders, there is an urgent need to discover novel biomarkers relevant to the co-morbidity of both conditions to guide future diagnostic approaches. This review aims to provide a comprehensive background of the potential risk factors, the identified biomarkers of diabetes-related cognitive decrements, and the underlying processes of diabetes-associated cognitive dysfunction. Aging, poor glycemic control, hypoglycemia and hyperglycemic episodes, depression, and vascular complications are associated with increased risk of dementia. Conclusive research studies that have attempted to find specific biomarkers are limited. However, the most frequent considerations in such investigations are related to C reactive protein, tau protein, brain-derived neurotrophic factor, advanced glycation end products, glycosylated hemoglobin, and adipokines.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Diabetes Mellitus Tipo 2 , Enfermedad de Alzheimer/metabolismo , Biomarcadores , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/etiología , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Pronóstico , Proteínas tau/metabolismo
16.
Biomedicines ; 10(5)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35625757

RESUMEN

No therapy exists for non-alcoholic fatty liver disease (NAFLD). However, glucagon-like peptide receptor agonists (GLP-1RAs) showed a beneficial effect on NAFLD, although the underpinning mechanisms remain unclear due to their pleiotropic effects. We examined the implicated signaling pathways using comparative transcriptomics in a cell model of steatosis to overcome pleiotropy. We treated steatotic HepG2 cells with the GLP-1RA Exendin-4 (Ex-4). We compared the transcriptome profiles of untreated steatotic, and Ex-4-treated steatotic cells, and used Ingenuity Pathway Analysis (IPA) to identify the signaling pathways and associated genes involved in the protective effect of Ex-4. Ex-4 treatment significantly reduces steatosis. RNA-seq analysis revealed 209 differentially expressed genes (DEGs) between steatotic and untreated cells, with farnesoid X receptor/retinoid X receptor (FXR/RXR) (p = 8.9 × 10-7) activation being the top regulated canonical pathway identified by IPA. Furthermore, 1644 DEGs were identified between steatotic cells and Ex-4-treated cells, with liver X receptor/retinoid X receptor (LXR/RXR) (p = 2.02 × 10-7) and FXR/RXR (p = 3.28 × 10-7) activation being the two top canonical pathways. The top molecular and cellular functions between untreated and steatotic cells were lipid metabolism, molecular transport, and small molecular biochemistry, while organismal injury and abnormalities, endocrine system disorders, and gastrointestinal disease were the top three molecular and cellular functions between Ex-4-treated and steatotic cells. Genes overlapping steatotic cells and Ex-4-treated cells were associated with several lipid metabolism processes. Unique transcriptomic differences exist between steatotic cells and Ex-4-treated steatotic cells, providing an important resource for understanding the mechanisms that underpin the protective effect of GLP-1RAs on NAFLD and for the identification of novel therapeutic targets for NAFLD.

17.
PLoS One ; 17(3): e0264692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35271604

RESUMEN

The relationship between salivary α-amylase activity (ssAAa) and the risk of metabolic disorders remains equivocal. We aimed to assess this relationship in adults from Qatar, where obesity and type 2 diabetes are highly prevalent. We cross-sectionally quantified ssAAa in saliva and estimated AMY1 CN from whole-genome sequencing data from 1499 participants. Linear regression was used to assess the relationship between ssAAa and adiposity and glycemic markers. Logistic regression was used to examine the association between ssAAa and occurrence of obesity or diabetes. The mean and median ssAAa were significantly lower in obese individuals. There were significant inverse associations between ssAAa and BMI, and fat mass. We detected a marked effect of ssAAa on reduced odds of obesity after adjusting for age and sex, glucose, LDL, HLD, total cholesterol, and systolic and diastolic blood pressure (OR per ssAAa unit 0.998 [95% CI 0.996-0.999], p = 0.005), with ssAAa ranging between 6.8 and 422U/mL. The obesity odds were significantly lower in the upper half of the ssAAa distributional (OR 0.58 [95% CI 0.42-0.76], p<0.001) and lower in the top versus the bottom decile of the ssAAa distribution (OR 0.46 [95% CI 0.23-0.92], p = 0.03). Our findings suggest a potential beneficial relationship between high sAAa in saliva and low odds of obesity in Qatari adults.


Asunto(s)
Obesidad , alfa-Amilasas Salivales , Adulto , Índice de Masa Corporal , Estudios Transversales , Diabetes Mellitus Tipo 2/epidemiología , Humanos , Obesidad/epidemiología , Qatar/epidemiología , Saliva/metabolismo , alfa-Amilasas Salivales/metabolismo
18.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35328807

RESUMEN

Ischemic strokes are associated with significant morbidity and mortality, but currently there are no reliable prognostic or diagnostic blood biomarkers. MicroRNAs (miRNAs) regulate various molecular pathways and may be used as biomarkers. Using RNA-Seq, we conducted comprehensive circulating miRNA profiling in patients with ischemic stroke compared with healthy controls. Samples were collected within 24 h of clinical diagnosis. Stringent analysis criteria of discovery (46 cases and 95 controls) and validation (47 cases and 96 controls) cohorts led to the identification of 10 differentially regulated miRNAs, including 5 novel miRNAs, with potential diagnostic significance. Hsa-miR-451a was the most significantly upregulated miRNA (FC; 4.8, FDR; 3.78 × 10-85), while downregulated miRNAs included hsa-miR-574-5p and hsa-miR-142-3p, among others. Importantly, we computed a multivariate classifier based on the identified miRNA panel to differentiate between ischemic stroke patients and healthy controls, which showed remarkably high sensitivity (0.94) and specificity (0.99). The area under the ROC curve was 0.97 and it is superior to other current available biomarkers. Moreover, in samples collected one month following stroke, we found sustained upregulation of hsa-miR-451a and downregulation of another 5 miRNAs. Lastly, we report 3 miRNAs that were significantly associated with poor clinical outcomes of stroke, as defined by the modified Rankin scores. The clinical translation of the identified miRNA panel may be explored further.


Asunto(s)
MicroARN Circulante , Accidente Cerebrovascular Isquémico , MicroARNs , Accidente Cerebrovascular , Biomarcadores , MicroARN Circulante/genética , Perfilación de la Expresión Génica , Humanos , Accidente Cerebrovascular Isquémico/diagnóstico , Accidente Cerebrovascular Isquémico/genética , MicroARNs/genética , Curva ROC , Accidente Cerebrovascular/genética
19.
Sci Rep ; 12(1): 2226, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35140289

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide. Agonists of the glucagon-like peptide-1 receptor (GLP-1R), currently approved to treat type 2 diabetes, hold promise to improve steatosis and even steatohepatitis. However, due to their pleiotropic effects, the mechanisms underlying their protective effect on NAFLD remain elusive. We aimed to investigate these mechanisms using an in vitro model of steatosis treated with the GLP-1R agonist Exendin-4 (Ex-4). We established steatotic HepG2 cells by incubating the cells with 400 µM oleic acid (OA) overnight. Further treatment with 200 nM Ex-4 for 3 h significantly reduced the OA-induced lipid accumulation (p < 0.05). Concomitantly, Ex-4 substantially reduced the expression levels of Fatty Acid-Binding Protein 1 (FABP1) and its primary activator, Forkhead box protein A1 (FOXA1). Interestingly, the silencing of ß-catenin with siRNA abolished the effect of Ex-4 on these genes, suggesting dependency on the Wnt/ß-catenin pathway. Additionally, after ß-catenin silencing, OA treatment significantly increased the expression of nuclear transcription factors SREBP-1 and TCF4, whereas Ex-4 significantly decreased this upregulation. Our findings suggest that direct activation of GLP-1R by Ex-4 reduces OA-induced steatosis in HepG2 cells by reducing fatty acid uptake and transport via FABP1 downregulation.


Asunto(s)
Exenatida/farmacología , Proteínas de Unión a Ácidos Grasos/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Sustancias Protectoras/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Proteínas de Unión a Ácidos Grasos/genética , Hígado Graso/inducido químicamente , Receptor del Péptido 1 Similar al Glucagón/agonistas , Células Hep G2 , Factor Nuclear 3-alfa del Hepatocito/genética , Humanos , Técnicas In Vitro , Metabolismo de los Lípidos/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Modelos Biológicos , Ácido Oléico/toxicidad , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factor de Transcripción 4/metabolismo , Vía de Señalización Wnt/genética
20.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36613546

RESUMEN

Transient ischemic attack (TIA) refers to a momentary neurologic deficit caused by focal cerebral, spinal or retinal ischemic insult. TIA is associated with a high risk of impending acute ischemic stroke (AIS), a neurologic dysfunction characterized by focal cerebral, spinal or retinal infarction. Understanding the differences in molecular pathways in AIS and TIA has merit for deciphering the underlying cause for neuronal deficits with long-term effects and high risks of morbidity and mortality. In this study, we performed comprehensive investigations into the circulating microRNA (miRNA) profiles of AIS (n = 191) and TIA (n = 61) patients. We performed RNA-Seq on serum samples collected within 24 hrs of clinical diagnosis and randomly divided the study populations into discovery and validation cohorts. We identified a panel of 11 differentially regulated miRNAs at FDR < 0.05. Hsa-miR-548c-5p, -20a-5p, -18a-5p, -484, -652-3p, -486-3p, -24-3p, -181a-5p and -222-3p were upregulated, while hsa-miR-500a-3p and -206 were downregulated in AIS patients compared to TIA patients. We also probed the previously validated gene targets of our identified miRNA panel to highlight the molecular pathways affected in AIS. Moreover, we developed a multivariate classifier with potential utilization as a discriminative biomarker for AIS and TIA patients. The underlying molecular pathways in AIS compared to TIA may be explored further in functional studies for therapeutic targeting in clinical translation.


Asunto(s)
MicroARN Circulante , Ataque Isquémico Transitorio , Accidente Cerebrovascular Isquémico , MicroARNs , Accidente Cerebrovascular , Humanos , Biomarcadores , MicroARN Circulante/genética , Ataque Isquémico Transitorio/genética , Accidente Cerebrovascular Isquémico/genética , MicroARNs/metabolismo , Accidente Cerebrovascular/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...