Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pers Med ; 14(2)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38392572

RESUMEN

The aim of this study was to analyze and compare the accuracy of a novel interproximal enamel reduction (IPR) technique based on a computer-aided static navigation technique with respect to a conventional free-hand-based technique for interproximal enamel reduction. Twenty anatomical-based experimental cast models of polyurethane were randomly distributed into the following IPR techniques: IPR technique based on computer-aided static navigation technique (n = 10) (GI) for Group A and conventional free-hand-based technique for the IPR (n = 10) (FHT) for Group B. The anatomical-based experimental cast models of polyurethane randomly assigned to the GI study group were submitted for a preoperative 3D intraoral surface scan; then, datasets were uploaded into 3D implant-planning software to design virtual templates for the interproximal enamel reduction technique. Afterward, the anatomical-based experimental cast models of polyurethane of both GI and FHT study groups were subjected to a postoperative digital impression by a 3D intraoral surface scan to compare the accuracy of the interproximal enamel reduction techniques at the buccal (mm), lingual/palatal (mm), and angular (◦) levels using the Student t-test. Statistically significant differences between the interproximal enamel reduction technique based on the computer-aided static navigation technique and the conventional free-hand-based technique for the interproximal enamel reduction at the buccal (p = 0.0008) and lingual/palatal (p < 0.0001) levels; however, no statistically significant differences were shown at the angular level (p = 0.1042). The interproximal enamel reduction technique based on computer-aided static navigation technique was more accurate than the conventional free-hand-based technique for interproximal enamel reduction.

2.
J Pers Med ; 14(1)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38248774

RESUMEN

This study seeks to assess the accuracy of apical location using an augmented reality (AR) device with a free-hand method. Sixty (60) osteotomy site preparations were randomly assigned to one of two study groups: A. AR device (AR) (n = 30), and B. conventional free-hand method (FHM) (n = 30). Preoperative CBCT scans and intraoral scans were taken and uploaded to specialized implant-planning software to virtually plan preparations for the apical location osteotomy sites. The planning software was then used to automatically segment the teeth in each experimental model for their complete visualization using the AR device. A CBCT scan was carried out postoperatively after conducting the apical location procedures. The subsequent datasets were imported into therapeutic software to analyze the coronal, apical, and angular deviations. The Mann-Whitney non-parametric test was used. There were no statistically significant differences identified at the coronal (p = 0.1335), apical (p = 0.2401), and angular deviations (p = 0.4849) between the AR and FHM study groups. The augmented reality technique did not show a statistically significant accuracy of osteotomies for apical location when compared with the conventional free-hand method.

3.
Front Bioeng Biotechnol ; 11: 1321495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38173871

RESUMEN

The mechanical properties of polyurethane dental aligners have been studied in an oral environment at 37°C and subjected to thermal cycling between 5°C and 55°C for long periods of time at different mechanical stresses. The aim is to determine the efficacy of the orthodontic aligner at different stress levels, the effect of thermal cycling with therapy time on tooth position correction. Sixty aligners with the same design were studied applying tensions of 0, 3 and 30 N and determining the deformation at different times from 1 to 760 h. Half of these aligners were subjected to stresses submerged in artificial saliva at 37°C and the other half were subjected to thermal cycles between 2°C and 55°C in salivary medium. Deformation was determined using a high-resolution stereo magnifier and ImageJ image analysis software. Water adsorption by the polyurethane was determined at the different test times. The results showed that in the unloaded aligners there is no appreciable deformation, but with thermal cycling there is a light shrinkage of the aligner due to the semi-crystallization process (ordering of polymeric chains) of the polyurethane. When applying loads of 3 and 30 N, creep curves with constant deformation transition zones can be seen. The transition zones decrease as the applied mechanical load increases. In addition, the significant effect of thermal cycling on the reduction of the transition zone of the aligners has been demonstrated. The transition zones are optimal for dental correction as constant stresses are exerted for tooth movement. The effect of thermal cycling shortens the constant deformation zone and reduces tooth alignment time. It was observed that the absorption of water in the aligner is constant after 1 h of immersion and does not exceed 0.4% by weight of absorbed water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...