Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Proc Natl Acad Sci U S A ; 120(52): e2306160120, 2023 Dec 26.
Article En | MEDLINE | ID: mdl-38109545

Epulopiscium spp. are the largest known heterotrophic bacteria; a large cigar-shaped individual is a million times the volume of Escherichia coli. To better understand the metabolic potential and relationship of Epulopiscium sp. type B with its host Naso tonganus, we generated a high-quality draft genome from a population of cells taken from a single fish. We propose the name Candidatus Epulopiscium viviparus to describe populations of this best-characterized Epulopiscium species. Metabolic reconstruction reveals more than 5% of the genome codes for carbohydrate active enzymes, which likely degrade recalcitrant host-diet algal polysaccharides into substrates that may be fermented to acetate, the most abundant short-chain fatty acid in the intestinal tract. Moreover, transcriptome analyses and the concentration of sodium ions in the host intestinal tract suggest that the use of a sodium motive force (SMF) to drive ATP synthesis and flagellar rotation is integral to symbiont metabolism and cellular biology. In natural populations, genes encoding both F-type and V-type ATPases and SMF generation via oxaloacetate decarboxylation are among the most highly expressed, suggesting that ATPases synthesize ATP and balance ion concentrations across the cell membrane. High expression of these and other integral membrane proteins may allow for the growth of its extensive intracellular membrane system. Further, complementary metabolism between microbe and host is implied with the potential provision of nitrogen and B vitamins to reinforce this nutritional symbiosis. The few features shared by all bacterial behemoths include extreme polyploidy, polyphosphate synthesis, and thus far, they have all resisted cultivation in the lab.


Sodium , Vacuolar Proton-Translocating ATPases , Animals , Sodium/metabolism , Bacteria/metabolism , Clostridiales/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Adenosine Triphosphate/metabolism
2.
Clin Infect Dis ; 71(8): e323-e330, 2020 11 05.
Article En | MEDLINE | ID: mdl-31814028

BACKGROUND: Produce-associated outbreaks of Shiga toxin-producing Escherichia coli (STEC) were first identified in 1991. In April 2018, New Jersey and Pennsylvania officials reported a cluster of STEC O157 infections associated with multiple locations of a restaurant chain. The Centers for Disease Control and Prevention (CDC) queried PulseNet, the national laboratory network for foodborne disease surveillance, for additional cases and began a national investigation. METHODS: A case was defined as an infection between 13 March and 22 August 2018 with 1 of the 22 identified outbreak-associated E. coli O157:H7 or E. coli O61 pulsed-field gel electrophoresis pattern combinations, or with a strain STEC O157 that was closely related to the main outbreak strain by whole-genome sequencing. We conducted epidemiologic and traceback investigations to identify illness subclusters and common sources. A US Food and Drug Administration-led environmental assessment, which tested water, soil, manure, compost, and scat samples, was conducted to evaluate potential sources of STEC contamination. RESULTS: We identified 240 case-patients from 37 states; 104 were hospitalized, 28 developed hemolytic uremic syndrome, and 5 died. Of 179 people who were interviewed, 152 (85%) reported consuming romaine lettuce in the week before illness onset. Twenty subclusters were identified. Product traceback from subcluster restaurants identified numerous romaine lettuce distributors and growers; all lettuce originated from the Yuma growing region. Water samples collected from an irrigation canal in the region yielded the outbreak strain of STEC O157. CONCLUSIONS: We report on the largest multistate leafy greens-linked STEC O157 outbreak in several decades. The investigation highlights the complexities associated with investigating outbreaks involving widespread environmental contamination.


Escherichia coli Infections , Escherichia coli O157 , Foodborne Diseases , Shiga-Toxigenic Escherichia coli , Disease Outbreaks , Escherichia coli Infections/epidemiology , Escherichia coli O157/genetics , Food Microbiology , Foodborne Diseases/epidemiology , Humans , Lactuca , Pennsylvania , Shiga-Toxigenic Escherichia coli/genetics , United States/epidemiology
3.
ISME J ; 13(4): 1084-1097, 2019 04.
Article En | MEDLINE | ID: mdl-30643198

Epulopiscium sp. type B (Lachnospiraceae) is an exceptionally large, highly polyploid, intestinal symbiont of the coral reef dwelling surgeonfish Naso tonganus. These obligate anaerobes do not form mature endospores and reproduce solely through the production of multiple intracellular offspring. This likely makes them dependent on immediate transfer to a receptive host for dispersal. During reproduction, only a small proportion of Epulopiscium mother-cell DNA is inherited. To explore the impact of this unusual viviparous lifestyle on symbiont population dynamics, we investigated Epulopiscium sp. type B and their fish hosts collected over the course of two decades, at island and reef habitats near Lizard Island, Australia. Using multi-locus sequence analysis, we found that recombination plays an important role in maintaining diversity of these symbionts and yet populations exhibit linkage disequilibrium (LD). Symbiont populations showed spatial but not temporal partitioning. Surgeonfish are long-lived and capable of traveling long distances, yet the population structures of Epulopiscium suggest that adult fish tend to not roam beyond a limited locale. Codiversification analyses and traits of this partnership suggest that while symbionts are obligately dependent on their host, the host has a facultative association with Epulopiscium. We suggest that congression of unlinked markers contributes to LD estimates in this and other recombinant populations of bacteria. The findings here inform our understanding of evolutionary processes within intestinal Lachnospiraceae populations.


Firmicutes/genetics , Fishes/microbiology , Recombination, Genetic , Animals , Australia , Coral Reefs , Firmicutes/classification , Firmicutes/isolation & purification , Intestines/microbiology , Linkage Disequilibrium , Polyploidy , Symbiosis
4.
Mol Microbiol ; 107(1): 68-80, 2018 Jan.
Article En | MEDLINE | ID: mdl-29024073

Few studies have described chromosomal dynamics in bacterial cells with more than two complete chromosome copies or described changes with respect to development in polyploid cells. We examined the arrangement of chromosomal loci in the very large, highly polyploid, uncultivated intestinal symbiont Epulopiscium sp. type B using fluorescent in situ hybridization. We found that in new offspring, chromosome replication origins (oriCs) are arranged in a three-dimensional array throughout the cytoplasm. As development progresses, most oriCs become peripherally located. Siblings within a mother cell have similar numbers of oriCs. When chromosome orientation was assessed in situ by labeling two chromosomal regions, no specific pattern was detected. The Epulopiscium genome codes for many of the conserved positional guide proteins used for chromosome segregation in bacteria. Based on this study, we present a model that conserved chromosomal maintenance proteins, combined with entropic demixing, provide the forces necessary for distributing oriCs. Without the positional regulation afforded by radial confinement, chromosomes are more randomly oriented in Epulopiscium than in most small rod-shaped cells. Furthermore, we suggest that the random orientation of individual chromosomes in large polyploid cells would not hamper reproductive success as it would in smaller cells with more limited genomic resources.


Chromosome Segregation/physiology , Clostridiales/metabolism , Replication Origin/physiology , Bacteria/genetics , Bacterial Proteins/metabolism , Clostridiales/genetics , DNA Replication/genetics , DNA, Bacterial/metabolism , In Situ Hybridization, Fluorescence , Polyploidy , Replication Origin/genetics
5.
Antimicrob Agents Chemother ; 59(1): 414-20, 2015 Jan.
Article En | MEDLINE | ID: mdl-25367911

Reliable molecular diagnostics, which detect specific mutations associated with drug resistance, are promising technologies for the rapid identification and monitoring of drug resistance in Mycobacterium tuberculosis isolates. Pyrosequencing (PSQ) has the ability to detect mutations associated with first- and second-line anti-tuberculosis (TB) drugs, with the additional advantage of being rapidly adaptable for the identification of new mutations. The aim of this project was to evaluate the performance of PSQ in predicting phenotypic drug resistance in multidrug- and extensively drug-resistant tuberculosis (M/XDR-TB) clinical isolates from India, South Africa, Moldova, and the Philippines. A total of 187 archived isolates were run through a PSQ assay in order to identify M. tuberculosis (via the IS6110 marker), and to detect mutations associated with M/XDR-TB within small stretches of nucleotides in selected loci. The molecular targets included katG, the inhA promoter and the ahpC-oxyR intergenic region for isoniazid (INH) resistance; the rpoB core region for rifampin (RIF) resistance; gyrA for fluoroquinolone (FQ) resistance; and rrs for amikacin (AMK), capreomycin (CAP), and kanamycin (KAN) resistance. PSQ data were compared to phenotypic mycobacterial growth indicator tube (MGIT) 960 drug susceptibility testing results for performance analysis. The PSQ assay illustrated good sensitivity for the detection of resistance to INH (94%), RIF (96%), FQ (93%), AMK (84%), CAP (88%), and KAN (68%). The specificities of the assay were 96% for INH, 100% for RIF, FQ, AMK, and KAN, and 97% for CAP. PSQ is a highly efficient diagnostic tool that reveals specific nucleotide changes associated with resistance to the first- and second-line anti-TB drug medications. This methodology has the potential to be linked to mutation-specific clinical interpretation algorithms for rapid treatment decisions.


Antitubercular Agents/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Extensively Drug-Resistant Tuberculosis/drug therapy , Microbial Sensitivity Tests/methods , Mycobacterium tuberculosis/drug effects , Bacterial Proteins/genetics , Base Sequence , Catalase/genetics , DNA Gyrase/genetics , DNA, Bacterial/genetics , DNA-Directed RNA Polymerases , Extensively Drug-Resistant Tuberculosis/microbiology , Humans , Isoniazid/therapeutic use , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Oxidoreductases/genetics , Promoter Regions, Genetic/genetics , Sequence Analysis, DNA
...