Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 10: 905557, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017344

RESUMEN

Recent advances in the field of cell therapy have proposed new solutions for tissue repair and regeneration using various cell delivery approaches. Here we studied ex vivo a novel topical delivery system of encapsulated cells in hybrid polyethylene glycol-fibrinogen (PEG-Fb) hydrogel microspheres to respiratory tract models. We investigated basic parameters of cell encapsulation, delivery and release in conditions of inflamed and damaged lungs of bacterial-infected mice. The establishment of each step in the study was essential for the proof of concept. We demonstrated co-encapsulation of alveolar macrophages and epithelial cells that were highly viable and equally distributed inside the microspheres. We found that encapsulated macrophages exposed to bacterial endotoxin lipopolysaccharide preserved high viability and secreted moderate levels of TNFα, whereas non-encapsulated cells exhibited a burst TNFα secretion and reduced viability. LPS-exposed encapsulated macrophages exhibited elongated morphology and out-migration capability from microspheres. Microsphere degradation and cell release in inflamed lung environment was studied ex vivo by the incubation of encapsulated macrophages with lung extracts derived from intranasally infected mice with Yersinia pestis, demonstrating the potential in cell targeting and release in inflamed lungs. Finally, we demonstrated microsphere delivery to a multi-component airways-on-chip platform that mimic human nasal, bronchial and alveolar airways in serially connected compartments. This study demonstrates the feasibility in using hydrogel microspheres as an effective method for topical cell delivery to the lungs in the context of pulmonary damage and the need for tissue repair.

2.
Bioeng Transl Med ; 7(2): e10271, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35600654

RESUMEN

Mortality rates among patients suffering from acute respiratory failure remain perplexingly high despite the maintenance of blood oxygen homeostasis during ventilatory support. The biotrauma hypothesis advocates that mechanical forces from invasive ventilation trigger immunological mediators that spread systemically. Yet, how these forces elicit an immune response remains unclear. Here, a biomimetic in vitro three-dimensional (3D) upper airways model allows to recapitulate lung injury and immune responses induced during invasive mechanical ventilation in neonates. Under such ventilatory support, flow-induced stresses injure the bronchial epithelium of the intubated airways model and directly modulate epithelial cell inflammatory cytokine secretion associated with pulmonary injury. Fluorescence microscopy and biochemical analyses reveal site-specific susceptibility to epithelial erosion in airways from jet-flow impaction and are linked to increases in cell apoptosis and modulated secretions of cytokines IL-6, -8, and -10. In an effort to mitigate the onset of biotrauma, prophylactic pharmacological treatment with Montelukast, a leukotriene receptor antagonist, reduces apoptosis and pro-inflammatory signaling during invasive ventilation of the in vitro model. This 3D airway platform points to a previously overlooked origin of lung injury and showcases translational opportunities in preclinical pulmonary research toward protective therapies and improved protocols for patient care.

3.
Nano Lett ; 22(11): 4376-4382, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35616515

RESUMEN

Autoimmune diseases and in particular type 1 diabetes rely heavily on treatments that target the symptoms rather than prevent the underlying disease. One of the barriers to better therapeutic strategies is the inability to detect and efficiently target rare autoreactive T-cell populations that are major drivers of these conditions. Here, we develop a unique artificial antigen-presenting cell (aAPC) system from biocompatible polymer particles that allows specific encapsulation of bioactive ingredients. Using our aAPC, we demonstrate that we are able to detect rare autoreactive CD4 populations in human patients, and using mouse models, we demonstrate that our particles are able to induce desensitization in the autoreactive population. This system provides a promising tool that can be used in the prevention of autoimmunity before disease onset.


Asunto(s)
Diabetes Mellitus Tipo 1 , Linfocitos T , Animales , Células Presentadoras de Antígenos , Autoinmunidad , Linfocitos T CD4-Positivos , Diabetes Mellitus Tipo 1/terapia , Humanos , Ratones
4.
Front Physiol ; 13: 853317, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35350687

RESUMEN

The past decade has witnessed tremendous endeavors to deliver novel preclinical in vitro lung models for pulmonary research endpoints, including foremost with the advent of organ- and lung-on-chips. With growing interest in aerosol transmission and infection of respiratory viruses within a host, most notably the SARS-CoV-2 virus amidst the global COVID-19 pandemic, the importance of crosstalk between the different lung regions (i.e., extra-thoracic, conductive and respiratory), with distinct cellular makeups and physiology, are acknowledged to play an important role in the progression of the disease from the initial onset of infection. In the present Methods article, we designed and fabricated to the best of our knowledge the first multi-compartment human airway-on-chip platform to serve as a preclinical in vitro benchmark underlining regional lung crosstalk for viral infection pathways. Combining microfabrication and 3D printing techniques, our platform mimics key elements of the respiratory system spanning (i) nasal passages that serve as the alleged origin of infections, (ii) the mid-bronchial airway region and (iii) the deep acinar region, distinct with alveolated airways. Crosstalk between the three components was exemplified in various assays. First, viral-load (including SARS-CoV-2) injected into the apical partition of the nasal compartment was detected in distal bronchial and acinar components upon applying physiological airflow across the connected compartment models. Secondly, nebulized viral-like dsRNA, poly I:C aerosols were administered to the nasal apical compartment, transmitted to downstream compartments via respiratory airflows and leading to an elevation in inflammatory cytokine levels secreted by distinct epithelial cells in each respective compartment. Overall, our assays establish an in vitro methodology that supports the hypothesis for viral-laden airflow mediated transmission through the respiratory system cellular landscape. With a keen eye for broader end user applications, we share detailed methodologies for fabricating, assembling, calibrating, and using our multi-compartment platform, including open-source fabrication files. Our platform serves as an early proof-of-concept that can be readily designed and adapted to specific preclinical pulmonary research endpoints.

5.
Front Bioeng Biotechnol ; 9: 743236, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692661

RESUMEN

Complex in vitro models, especially those based on human cells and tissues, may successfully reduce or even replace animal models within pre-clinical development of orally inhaled drug products. Microfluidic lung-on-chips are regarded as especially promising models since they allow the culture of lung specific cell types under physiological stimuli including perfusion and air-liquid interface (ALI) conditions within a precisely controlled in vitro environment. Currently, though, such models are not available to a broad user community given their need for sophisticated microfabrication techniques. They further require systematic comparison to well-based filter supports, in analogy to traditional Transwells®. We here present a versatile perfusable platform that combines the advantages of well-based filter supports with the benefits of perfusion, to assess barrier permeability of and aerosol deposition on ALI cultured pulmonary epithelial cells. The platform as well as the required technical accessories can be reproduced via a detailed step-by-step protocol and implemented in typical bio-/pharmaceutical laboratories without specific expertise in microfabrication methods nor the need to buy costly specialized equipment. Calu-3 cells cultured under liquid covered conditions (LCC) inside the platform showed similar development of transepithelial electrical resistance (TEER) over a period of 14 days as cells cultured on a traditional Transwell®. By using a customized deposition chamber, fluorescein sodium was nebulized via a clinically relevant Aerogen® Solo nebulizer onto Calu-3 cells cultured under ALI conditions within the platform. This not only allowed to analyze the transport of fluorescein sodium after ALI deposition under perfusion, but also to compare it to transport under traditional static conditions.

6.
Adv Drug Deliv Rev ; 176: 113901, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34331989

RESUMEN

Over the past years, advanced in vitro pulmonary platforms have witnessed exciting developments that are pushing beyond traditional preclinical cell culture methods. Here, we discuss ongoing efforts in bridging the gap between in vivo and in vitro interfaces and identify some of the bioengineering challenges that lie ahead in delivering new generations of human-relevant in vitro pulmonary platforms. Notably, in vitro strategies using foremost lung-on-chips and biocompatible "soft" membranes have focused on platforms that emphasize phenotypical endpoints recapitulating key physiological and cellular functions. We review some of the most recent in vitro studies underlining seminal therapeutic screens and translational applications and open our discussion to promising avenues of pulmonary therapeutic exploration focusing on liposomes. Undeniably, there still remains a recognized trade-off between the physiological and biological complexity of these in vitro lung models and their ability to deliver assays with throughput capabilities. The upcoming years are thus anticipated to see further developments in broadening the applicability of such in vitro systems and accelerating therapeutic exploration for drug discovery and translational medicine in treating respiratory disorders.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Pulmón , Modelos Biológicos , Fármacos del Sistema Respiratorio/uso terapéutico , Animales , Bioingeniería , Humanos , Ciencia Traslacional Biomédica
7.
J Biomech ; 122: 110458, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-33932914

RESUMEN

Liquid plug therapies are commonly instilled in premature babies suffering from infant respiratory distress syndrome (IRDS) by a procedure called surfactant replacement therapy (SRT) in which a surfactant-laden bolus is instilled endotracheally in the neonatal lungs, dramatically reducing mortality and morbidity in neonatal populations. Since data are frequently limited, the optimal method for surfactant delivery has yet to be established towards more standardized guidelines. Here, we explore the dynamics of liquid plug transport using an anatomically-relevant, true-scale in vitro 3D model of the upper airways of a premature infant. We quantify the initial plug's distribution as a function of two underlying parameters that can be clinically controlled; namely, the injection flow rate and the viscosity of the administered fluid. By extracting a homogeneity index (HI), our in vitro results underline how the combination of both high fluid viscosity and injection flow rates may be advantageous in improving homogeneous dispersion. Such outcomes are anticipated to help refine future SRT administration guidelines towards more uniform distribution using more anatomically-realistic 3D in vitro models at true scale of the preterm neonate.


Asunto(s)
Surfactantes Pulmonares , Síndrome de Dificultad Respiratoria del Recién Nacido , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Pulmón , Surfactantes Pulmonares/uso terapéutico , Síndrome de Dificultad Respiratoria del Recién Nacido/tratamiento farmacológico , Tráquea
9.
Artículo en Inglés | MEDLINE | ID: mdl-32154228

RESUMEN

Lung exposure to inhaled particulate matter (PM) is known to injure the airway epithelium via inflammation, a phenomenon linked to increased levels of global morbidity and mortality. To evaluate physiological outcomes following PM exposure and concurrently circumvent the use of animal experiments, in vitro approaches have typically relied on traditional assays with plates or well inserts. Yet, these manifest drawbacks including the inability to capture physiological inhalation conditions and aerosol deposition characteristics relative to in vivo human conditions. Here, we present a novel airway-on-chip exposure platform that emulates the epithelium of human bronchial airways with critical cellular barrier functions at an air-liquid interface (ALI). As a proof-of-concept for in vitro lung cytotoxicity testing, we recapitulate a well-characterized cell apoptosis pathway, induced through exposure to 2 µm airborne particles coated with αVR1 antibody that leads to significant loss in cell viability across the recapitulated airway epithelium. Notably, our in vitro inhalation assays enable simultaneous aerosol exposure across multiple airway chips integrated within a larger bronchial airway tree model, under physiological respiratory airflow conditions. Our findings underscore in situ-like aerosol deposition outcomes where patterns depend on respiratory flows across the airway tree geometry and gravitational orientation, as corroborated by concurrent numerical simulations. Our airway-on-chips not only highlight the prospect of realistic in vitro exposure assays in recapitulating characteristic local in vivo deposition outcomes, such platforms open opportunities toward advanced in vitro exposure assays for preclinical cytotoxicity and drug screening applications.

10.
Eur J Pharm Biopharm ; 144: 11-17, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31499161

RESUMEN

With rapid advances in micro-fabrication processes and the availability of biologically-relevant lung cells, the development of lung-on-chip platforms is offering novel avenues for more realistic inhalation assays in pharmaceutical research, and thereby an opportunity to depart from traditional in vitro lung assays. As advanced models capturing the cellular pulmonary make-up at an air-liquid interface (ALI), lung-on-chips emulate both morphological features and biological functionality of the airway barrier with the ability to integrate respiratory breathing motions and ensuing tissue strains. Such in vitro systems allow importantly to mimic more realistic physiological respiratory flow conditions, with the opportunity to integrate physically-relevant transport determinants of aerosol inhalation therapy, i.e. recapitulating the pathway from airborne flight to deposition on the airway lumen. In this short opinion, we discuss such points and describe how these attributes are paving new avenues for exploring improved drug carrier designs (e.g. shape, size, etc.) and targeting strategies (e.g. conductive vs. respiratory regions) amongst other. We argue that while technical challenges still lie along the way in rendering in vitro lung-on-chip platforms more widespread across the general pharmaceutical research community, significant momentum is steadily underway in accelerating the prospect of establishing these as in vitro "gold standards".


Asunto(s)
Aerosoles/metabolismo , Bioensayo/métodos , Pulmón/metabolismo , Administración por Inhalación , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Humanos , Modelos Biológicos , Tamaño de la Partícula , Respiración/efectos de los fármacos , Terapia Respiratoria/métodos
11.
Adv Biosyst ; 3(9): e1900026, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-32648651

RESUMEN

Bacterial invasion of the respiratory system leads to complex immune responses. In the deep alveolar regions, the first line of defense includes foremost the alveolar epithelium, the surfactant-rich liquid lining, and alveolar macrophages. Typical in vitro models come short of mimicking the complexity of the airway environment in the onset of airway infection; among others, they neither capture the relevant anatomical features nor the physiological flows innate of the acinar milieu. Here, novel microfluidic-based acini-on-chips that mimic more closely the native acinar airways at a true scale with an anatomically inspired, multigeneration alveolated tree are presented and an inhalation-like maneuver is delivered. Composed of human alveolar epithelial lentivirus immortalized cells and macrophages-like human THP-1 cells at an air-liquid interface, the models maintain critically an epithelial barrier with immune function. To demonstrate, the usability and versatility of the platforms, a realistic inhalation exposure assay mimicking bacterial infection is recapitulated, whereby the alveolar epithelium is exposed to lipopolysaccharides droplets directly aerosolized and the innate immune response is assessed by monitoring the secretion of IL8 cytokines. These efforts underscore the potential to deliver advanced in vitro biosystems that can provide new insights into drug screening as well as acute and subacute toxicity assays.


Asunto(s)
Células Acinares/efectos de los fármacos , Técnicas de Cultivo de Célula/instrumentación , Dispositivos Laboratorio en un Chip , Lipopolisacáridos/farmacología , Modelos Biológicos , Células Acinares/citología , Células Acinares/inmunología , Línea Celular Transformada , Técnicas de Cocultivo , Dimetilpolisiloxanos/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Interleucina-8/biosíntesis , Microtecnología/instrumentación , Microtecnología/métodos , Mucosa Respiratoria/citología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/inmunología , Células THP-1
12.
Biomicrofluidics ; 12(4): 042209, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29887933

RESUMEN

The entire luminal surface of the lungs is populated with a complex yet confluent, uninterrupted airway epithelium in conjunction with an extracellular liquid lining layer that creates the air-liquid interface (ALI), a critical feature of healthy lungs. Motivated by lung disease modelling, cytotoxicity studies, and drug delivery assessments amongst other, in vitro setups have been traditionally conducted using macroscopic cultures of isolated airway cells under submerged conditions or instead using transwell inserts with permeable membranes to model the ALI architecture. Yet, such strategies continue to fall short of delivering a sufficiently realistic physiological in vitro airway environment that cohesively integrates at true-scale three essential pillars: morphological constraints (i.e., airway anatomy), physiological conditions (e.g., respiratory airflows), and biological functionality (e.g., cellular makeup). With the advent of microfluidic lung-on-chips, there have been tremendous efforts towards designing biomimetic airway models of the epithelial barrier, including the ALI, and leveraging such in vitro scaffolds as a gateway for pulmonary disease modelling and drug screening assays. Here, we review in vitro platforms mimicking the pulmonary environment and identify ongoing challenges in reconstituting accurate biological airway barriers that still widely prevent microfluidic systems from delivering mainstream assays for the end-user, as compared to macroscale in vitro cell cultures. We further discuss existing hurdles in scaling up current lung-on-chip designs, from single airway models to more physiologically realistic airway environments that are anticipated to deliver increasingly meaningful whole-organ functions, with an outlook on translational and precision medicine.

13.
Chem Mater ; 28(17): 6080-6088, 2016 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-27656042

RESUMEN

Poly(ethylene dioxythiophene) with functional pendant groups bearing double bonds is synthesized and employed for the fabrication of electroactive hydrogels with advantageous characteristics: covalently cross-linked porous 3D scaffolds with notable swelling ratio, appropriate mechanical properties, electroactivity in physiological conditions, and suitability for proliferation and differentiation of C2C12 cells. This is a new approach for the fabrication of conductive engineered constructs.

14.
Chem Mater ; 27(20): 7187-7195, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-28479671

RESUMEN

HIV-1 protease is a key enzyme in the life cycle of HIV/AIDS, as it is responsible for the formation of the mature virus particle. We demonstrate here that phage-display peptides raised against this enzyme can be used as peptide sensors for the detection of HIV-1 protease in a simple, one-pot assay. The presence of the enzyme is detected through an energy transfer between two peptide sensors when simultaneously complexed with the target protein. The multivalent nature of this assay increases the specificity of the detection by requiring all molecules to be interacting in order for there to be a FRET signal. We also perform molecular dynamics simulations to explore the interaction between the protease and the peptides in order to guide the design of these peptide sensors and to understand the mechanisms which cause these simultaneous binding events. This approach aims to facilitate the development of new assays for enzymes that are not dependent on the cleavage of a substrate and do not require multiple washing steps.

15.
J Pept Sci ; 20(6): 446-50, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24733719

RESUMEN

The vast potential applications of biomolecules that bind inorganic surfaces led mostly to the isolation of short peptides that target selectively specific materials. The demonstrated differential affinity toward certain surfaces created the impression that the recognition capacity of short peptides may match that of rigid biomolecules. In the following, we challenge this view by comparing the capacity of antibody molecules to discriminate between the (100) and (111A) facets of a gallium arsenide semiconductor crystal with the capacity of short peptides to do the same. Applying selection from several peptide and single chain phage display libraries, we find a number of antibody molecules that bind preferentially a given crystal facet but fail to isolate, in dozens of attempts, a single peptide capable of such recognition. The experiments underscore the importance of rigidity to the recognition of inorganic flat targets and therefore set limitations on potential applications of short peptides in biomimetics.


Asunto(s)
Anticuerpos/química , Arsenicales/química , Galio/química , Oligopéptidos/química , Anticuerpos/inmunología , Arsenicales/inmunología , Ensayo de Inmunoadsorción Enzimática , Galio/inmunología , Semiconductores , Propiedades de Superficie
16.
Nano Lett ; 12(9): 4992-6, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22900991

RESUMEN

Nanoscale organization of surface ligands often has a critical effect on cell-surface interactions. We have developed an experimental system that allows a high degree of control over the 2-D spatial distribution of ligands. As a proof of concept, we used the developed system to study how T-cell activation is independently affected by antigen density and antigen amount per cell. Arrays of submicrometer gold islands at varying surface coverage were defined on silicon by electron beam lithography (EBL). The gold islands were functionalized with alkanethiol self-assembled monolayers (SAMs) containing a small antigen, 2,4,6-trinotrophenyl (TNP), at various densities. Genetically engineered T-cell hybridomas expressing TNP-specific chimeric T-cell antigen receptor (CAR) were cultured on the SAMs, and their activation was assessed by IL-2 secretion and CD69 expression. It was found that, at constant antigen density, activation increased monotonically with the amount of antigen, while at constant antigen amount activation was maximal at an intermediate antigen density, whose value was independent of the amount of antigen.


Asunto(s)
Alcanos/química , Oro/química , Inmunoensayo/métodos , Nanopartículas/química , Análisis por Matrices de Proteínas/métodos , Mapeo de Interacción de Proteínas/métodos , Compuestos de Sulfhidrilo/química , Ensayo de Materiales , Impresión Molecular/métodos , Nanopartículas/ultraestructura
17.
ACS Nano ; 6(6): 4940-6, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22632128

RESUMEN

We present a novel hollow nanoneedle array (NNA) device capable of simultaneously delivering diverse cargo into a group of cells in a culture over prolonged periods. The silica needles are fed by a common reservoir whose content can be replenished and modified in real time while maintaining contact with the same cells. The NNA, albeit its submicrometer features, is fabricated in a silicon-on-insulator wafer using conventional, large scale, silicon technology. 3T3-NIH fibroblast cells and HEK293 human embryonic kidney cells are shown to grow and proliferate successfully on the NNAs. Cargo delivery from the reservoir through the needles to a group of HEK293 cells in the culture is demonstrated by repeated administration of fluorescently labeled dextran to the same cells and transfection with DNA coding for red fluorescent protein. The capabilities demonstrated by the NNA device open the door to large scale studies of the effect of selected cells on their environment as encountered, for instance, in the study of cell-fate decisions, the role of cell-autonomous versus nonautonomous mechanisms in developmental biology, and in the study of excitable cell-networks.


Asunto(s)
Microinyecciones/instrumentación , Nanotecnología/instrumentación , Agujas , Animales , Diseño de Equipo , Análisis de Falla de Equipo , Equipo Reutilizado , Células HEK293 , Humanos , Ratones , Células 3T3 NIH
18.
Nano Lett ; 11(11): 4997-5001, 2011 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-21985491

RESUMEN

Seamless embedment of electronic devices in biological systems is expected to add the outstanding computing power, memory, and speed of electronics to the biochemical toolbox of nature. Such amalgamation requires transduction of electronic signals into biochemical cues that affect cells. Inspired by biology, where pathways are directed by molecular recognition, we propose and demonstrate a generic electrical-to-biological transducer comprising a two-state electronic antigen and a chimeric cell receptor engineered to bind the antigen exclusively in its "on" state. T-cells expressing these receptors remain inactivated with the antigen in its "off" state. Switching the antigen to its "on" state by an electrical signal leads to its recognition by the T-cells and correspondingly to cell activation.


Asunto(s)
Receptores de Antígenos de Linfocitos T/efectos de la radiación , Anticuerpos de Cadena Única/efectos de la radiación , Linfocitos T/efectos de la radiación , Células Cultivadas , Campos Electromagnéticos , Humanos , Receptores de Antígenos de Linfocitos T/química , Anticuerpos de Cadena Única/química , Linfocitos T/química
19.
Nano Lett ; 8(10): 3398-403, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18788790

RESUMEN

Inspired by biology where pathways are triggered and suppressed by specific binding of two molecules, we realize a functional interface between electronics and biology by replacing one of the pair molecules with a two-state "electronic antigen" device comprising a hydroquinone monolayer assembled on gold, and choosing for the pair molecule an antibody that discriminates between the two electrically selected redox states of the monolayer. Application of an oxidative +0.6 V pulse to the antigen switches it to its benzoquinone state where antibodies bind the layer. A subsequent -0.6 V pulse reduces the monolayer back to the unbinding hydroquinone state, releases the specifically bound antibody molecules, and prevents further binding.


Asunto(s)
Antígenos/química , Nanotecnología/métodos , Animales , Técnicas Biosensibles , Electroquímica/métodos , Electrónica , Escherichia coli/metabolismo , Exotoxinas/metabolismo , Oro/química , Modelos Químicos , Conformación Molecular , Nanopartículas/química , Oxígeno/química , Pseudomonas/metabolismo , Factores de Tiempo
20.
Nano Lett ; 6(9): 1870-4, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16967993

RESUMEN

Seamless integration of biomolecules with manmade materials will most likely rely on molecular recognition and specific binding. In the following we show that combinatorial antibody libraries, based on the vast repertoire of the human immune system, can be harnessed to generate such binders. As a demonstration, we isolate antibody fragments that discriminate and bind selectively GaAs (111A) facets as opposed to GaAs (100). The isolated antibodies are utilized for exclusive localization of a fluorescent dye on (111A) surfaces in a structure comprising a mixture of (100) and (111A) surfaces. The potential importance of structure rigidity to facet recognition is suggested vis-a-vis published experiments with short and longer peptides.


Asunto(s)
Anticuerpos/química , Arsenicales/química , Biomimética/métodos , Cristalografía/métodos , Galio/química , Técnicas de Sonda Molecular , Semiconductores , Sitios de Unión , Ensayo de Materiales/métodos , Unión Proteica , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...