Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Radiol Cardiothorac Imaging ; 6(3): e230140, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38780427

RESUMEN

Purpose To investigate the feasibility of using quantitative MR elastography (MRE) to characterize the influence of aging and sex on left ventricular (LV) shear stiffness. Materials and Methods In this prospective study, LV myocardial shear stiffness was measured in 109 healthy volunteers (age range: 18-84 years; mean age, 40 years ± 18 [SD]; 57 women, 52 men) enrolled between November 2018 and September 2019, using a 5-minute MRE acquisition added to a clinical MRI protocol. Linear regression models were used to estimate the association of cardiac MRI and MRE characteristics with age and sex; models were also fit to assess potential age-sex interaction. Results Myocardial shear stiffness significantly increased with age in female (age slope = 0.03 kPa/year ± 0.01, P = .009) but not male (age slope = 0.008 kPa/year ± 0.009, P = .38) volunteers. LV ejection fraction (LVEF) increased significantly with age in female volunteers (0.23% ± 0.08 per year, P = .005). LV end-systolic volume (LVESV) decreased with age in female volunteers (-0.20 mL/m2 ± 0.07, P = .003). MRI parameters, including T1, strain, and LV mass, did not demonstrate this interaction (P > .05). Myocardial shear stiffness was not significantly correlated with LVEF, LV stroke volume, body mass index, or any MRI strain metrics (P > .05) but showed significant correlations with LV end-diastolic volume/body surface area (BSA) (slope = -3 kPa/mL/m2 ± 1, P = .004, r2 = 0.08) and LVESV/BSA (-1.6 kPa/mL/m2 ± 0.5, P = .003, r2 = 0.08). Conclusion This study demonstrates that female, but not male, individuals experience disproportionate LV stiffening with natural aging, and these changes can be noninvasively measured with MRE. Keywords: Cardiac, Elastography, Biological Effects, Experimental Investigations, Sexual Dimorphisms, MR Elastography, Myocardial Shear Stiffness, Quantitative Stiffness Imaging, Aging Heart, Myocardial Biomechanics, Cardiac MRE Supplemental material is available for this article. Published under a CC BY 4.0 license.


Asunto(s)
Envejecimiento , Diagnóstico por Imagen de Elasticidad , Ventrículos Cardíacos , Humanos , Femenino , Adulto , Masculino , Persona de Mediana Edad , Anciano , Diagnóstico por Imagen de Elasticidad/métodos , Anciano de 80 o más Años , Adolescente , Estudios Prospectivos , Envejecimiento/fisiología , Ventrículos Cardíacos/diagnóstico por imagen , Adulto Joven , Factores Sexuales , Función Ventricular Izquierda/fisiología , Imagen por Resonancia Magnética , Estudios de Factibilidad
2.
Am J Gastroenterol ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752654

RESUMEN

INTRODUCTION: Accurate risk prediction can facilitate screening and early detection of pancreatic cancer (PC). We conducted a systematic review to critically evaluate effectiveness of machine learning (ML) and artificial intelligence (AI) techniques applied to electronic health records (EHR) for PC risk prediction. METHODS: Ovid MEDLINE(R), Ovid EMBASE, Ovid Cochrane Central Register of Controlled Trials, Ovid Cochrane Database of Systematic Reviews, Scopus, and Web of Science were searched for articles that utilized ML/AI techniques to predict PC, published between January 1, 2012, and February 1, 2024. Study selection and data extraction were conducted by 2 independent reviewers. Critical appraisal and data extraction were performed using the CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies checklist. Risk of bias and applicability were examined using prediction model risk of bias assessment tool. RESULTS: Thirty studies including 169,149 PC cases were identified. Logistic regression was the most frequent modeling method. Twenty studies utilized a curated set of known PC risk predictors or those identified by clinical experts. ML model discrimination performance (C-index) ranged from 0.57 to 1.0. Missing data were underreported, and most studies did not implement explainable-AI techniques or report exclusion time intervals. DISCUSSION: AI/ML models for PC risk prediction using known risk factors perform reasonably well and may have near-term applications in identifying cohorts for targeted PC screening if validated in real-world data sets. The combined use of structured and unstructured EHR data using emerging AI models while incorporating explainable-AI techniques has the potential to identify novel PC risk factors, and this approach merits further study.

3.
IEEE Trans Biomed Eng ; 71(1): 68-76, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37440380

RESUMEN

OBJECTIVE: Rotors, regions of spiral wave reentry in cardiac tissues, are considered as the drivers of atrial fibrillation (AF), the most common arrhythmia. Whereas physics-based approaches have been widely deployed to detect the rotors, in-depth knowledge in cardiac physiology and electrogram interpretation skills are typically needed. The recent leap forward in smart sensing, data acquisition, and Artificial Intelligence (AI) has offered an unprecedented opportunity to transform diagnosis and treatment in cardiac ailment, including AF. This study aims to develop an image-decomposition-enhanced deep learning framework for automatic identification of rotor cores on both simulation and optical mapping data. METHODS: We adopt the Ensemble Empirical Mode Decomposition algorithm (EEMD) to decompose the original image, and the most representative component is then fed into a You-Only-Look-Once (YOLO) object-detection architecture for rotor detection. Simulation data from a bi-domain simulation model and optical mapping acquired from isolated rabbit hearts are used for training and validation. RESULTS: This integrated EEMD-YOLO model achieves high accuracy on both simulation and optical mapping data (precision: 97.2%, 96.8%, recall: 93.8%, 92.2%, and F1 score: 95.5%, 94.4%, respectively). CONCLUSION: The proposed EEMD-YOLO yields comparable accuracy in rotor detection with the gold standard in literature.


Asunto(s)
Fibrilación Atrial , Aprendizaje Profundo , Animales , Conejos , Inteligencia Artificial , Técnicas Electrofisiológicas Cardíacas/métodos , Potenciales de Acción , Fibrilación Atrial/diagnóstico
4.
J Cardiovasc Dev Dis ; 10(10)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37887880

RESUMEN

The interplay between neurology and cardiology has gained significant attention in recent years, particularly regarding the shared pathophysiological mechanisms and clinical comorbidities observed in epilepsy and arrhythmias. Neuro-cardiac electrophysiology mapping involves the comprehensive assessment of both neural and cardiac electrical activity, aiming to unravel the intricate connections and potential cross-talk between the brain and the heart. The emergence of artificial intelligence (AI) has revolutionized the field by enabling the analysis of large-scale data sets, complex signal processing, and predictive modeling. AI algorithms have been applied to neuroimaging, electroencephalography (EEG), electrocardiography (ECG), and other diagnostic modalities to identify subtle patterns, classify disease subtypes, predict outcomes, and guide personalized treatment strategies. In this review, we highlight the potential clinical implications of neuro-cardiac mapping and AI in the management of epilepsy and arrhythmias. We address the challenges and limitations associated with these approaches, including data quality, interpretability, and ethical considerations. Further research and collaboration between neurologists, cardiologists, and AI experts are needed to fully unlock the potential of this interdisciplinary field.

5.
J Imaging ; 9(8)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37623681

RESUMEN

Pancreatic carcinoma (Ca Pancreas) is the third leading cause of cancer-related deaths in the world. The malignancies of the pancreas can be diagnosed with the help of various imaging modalities. An endoscopic ultrasound with a tissue biopsy is so far considered to be the gold standard in terms of the detection of Ca Pancreas, especially for lesions <2 mm. However, other methods, like computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI), are also conventionally used. Moreover, newer techniques, like proteomics, radiomics, metabolomics, and artificial intelligence (AI), are slowly being introduced for diagnosing pancreatic cancer. Regardless, it is still a challenge to diagnose pancreatic carcinoma non-invasively at an early stage due to its delayed presentation. Similarly, this also makes it difficult to demonstrate an association between Ca Pancreas and other vital organs of the body, such as the heart. A number of studies have proven a correlation between the heart and pancreatic cancer. The tumor of the pancreas affects the heart at the physiological, as well as the molecular, level. An overexpression of the SMAD4 gene; a disruption in biomolecules, such as IGF, MAPK, and ApoE; and increased CA19-9 markers are a few of the many factors that are noted to affect cardiovascular systems with pancreatic malignancies. A comprehensive review of this correlation will aid researchers in conducting studies to help establish a definite relation between the two organs and discover ways to use it for the early detection of Ca Pancreas.

6.
J Clin Med ; 12(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37629273

RESUMEN

The association and interaction between the central nervous system (CNS) and enteric nervous system (ENS) is well established. Essentially ENS is the second brain, as we call it. We tried to understand the structure and function, to throw light on the functional aspect of neurons, and address various disease manifestations. We summarized how various neurological disorders influence the gut via the enteric nervous system and/or bring anatomical or physiological changes in the enteric nervous system or the gut and vice versa. It is known that stress has an effect on Gastrointestinal (GI) motility and causes mucosal erosions. In our literature review, we found that stress can also affect sensory perception in the central nervous system. Interestingly, we found that mutations in the neurohormone, serotonin (5-HT), would result in dysfunctional organ development and further affect mood and behavior. We focused on the developmental aspects of neurons and cognition and their relation to nutritional absorption via the gastrointestinal tract, the development of neurodegenerative disorders in relation to the alteration in gut microbiota, and contrariwise associations between CNS disorders and ENS. This paper further summarizes the synergetic relation between gastrointestinal and neuropsychological manifestations and emphasizes the need to include behavioral therapies in management plans.

7.
Sensors (Basel) ; 23(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37420680

RESUMEN

Respiratory disorders, being one of the leading causes of disability worldwide, account for constant evolution in management technologies, resulting in the incorporation of artificial intelligence (AI) in the recording and analysis of lung sounds to aid diagnosis in clinical pulmonology practice. Although lung sound auscultation is a common clinical practice, its use in diagnosis is limited due to its high variability and subjectivity. We review the origin of lung sounds, various auscultation and processing methods over the years and their clinical applications to understand the potential for a lung sound auscultation and analysis device. Respiratory sounds result from the intra-pulmonary collision of molecules contained in the air, leading to turbulent flow and subsequent sound production. These sounds have been recorded via an electronic stethoscope and analyzed using back-propagation neural networks, wavelet transform models, Gaussian mixture models and recently with machine learning and deep learning models with possible use in asthma, COVID-19, asbestosis and interstitial lung disease. The purpose of this review was to summarize lung sound physiology, recording technologies and diagnostics methods using AI for digital pulmonology practice. Future research and development in recording and analyzing respiratory sounds in real time could revolutionize clinical practice for both the patients and the healthcare personnel.


Asunto(s)
COVID-19 , Neumología , Estetoscopios , Humanos , Inteligencia Artificial , Ruidos Respiratorios/diagnóstico , Microondas , COVID-19/diagnóstico , Auscultación , Acústica
8.
Sensors (Basel) ; 23(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37420919

RESUMEN

The measurement of physiologic pressure helps diagnose and prevent associated health complications. From typical conventional methods to more complicated modalities, such as the estimation of intracranial pressures, numerous invasive and noninvasive tools that provide us with insight into daily physiology and aid in understanding pathology are within our grasp. Currently, our standards for estimating vital pressures, including continuous BP measurements, pulmonary capillary wedge pressures, and hepatic portal gradients, involve the use of invasive modalities. As an emerging field in medical technology, artificial intelligence (AI) has been incorporated into analyzing and predicting patterns of physiologic pressures. AI has been used to construct models that have clinical applicability both in hospital settings and at-home settings for ease of use for patients. Studies applying AI to each of these compartmental pressures were searched and shortlisted for thorough assessment and review. There are several AI-based innovations in noninvasive blood pressure estimation based on imaging, auscultation, oscillometry and wearable technology employing biosignals. The purpose of this review is to provide an in-depth assessment of the involved physiologies, prevailing methodologies and emerging technologies incorporating AI in clinical practice for each type of compartmental pressure measurement. We also bring to the forefront AI-based noninvasive estimation techniques for physiologic pressure based on microwave systems that have promising potential for clinical practice.


Asunto(s)
Inteligencia Artificial , Determinación de la Presión Sanguínea , Humanos , Presión Sanguínea , Determinación de la Presión Sanguínea/métodos , Oscilometría
9.
Ann Med Surg (Lond) ; 85(6): 2821-2832, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37363482

RESUMEN

Multiple sclerosis (MS) and myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) share the symptom of fatigue, and might even coexist together. Specifically focusing on genetics, pathophysiology, and neuroimaging data, the authors discuss an overview of the parallels, correlation, and differences in fatigue between MS and ME/CFS along with ME/CFS presence in MS. Studies have revealed that the prefrontal cortex and basal ganglia regions, which are involved in fatigue regulation, have similar neuroimaging findings in the brains of people with both MS and ME/CFS. Additionally, in both conditions, genetic factors have been implicated, with particular genes known to enhance susceptibility to MS and CFS. Management approaches for fatigue in MS and ME/CFS differ based on the underlying factors contributing to fatigue. The authors also focus on the recent updates and the relationship between MS and sleep disorders, including restless legs syndrome, focusing on pathophysiology and therapeutic approaches. Latest therapeutic approaches like supervised physical activity and moderate-intensity exercises have shown better outcomes.

10.
Sensors (Basel) ; 23(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36850899

RESUMEN

Production of bowel sounds, established in the 1900s, has limited application in existing patient-care regimes and diagnostic modalities. We review the physiology of bowel sound production, the developments in recording technologies and the clinical application in various scenarios, to understand the potential of a bowel sound recording and analysis device-the phonoenterogram in future gastroenterological practice. Bowel sound production depends on but is not entirely limited to the type of food consumed, amount of air ingested and the type of intestinal contractions. Recording technologies for extraction and analysis of these include the wavelet-based filtering, autoregressive moving average model, multivariate empirical mode decompression, radial basis function network, two-dimensional positional mapping, neural network model and acoustic biosensor technique. Prior studies evaluate the application of bowel sounds in conditions such as intestinal obstruction, acute appendicitis, large bowel disorders such as inflammatory bowel disease and bowel polyps, ascites, post-operative ileus, sepsis, irritable bowel syndrome, diabetes mellitus, neurodegenerative disorders such as Parkinson's disease and neonatal conditions such as hypertrophic pyloric stenosis. Recording and analysis of bowel sounds using artificial intelligence is crucial for creating an accessible, inexpensive and safe device with a broad range of clinical applications. Microwave-based digital phonoenterography has huge potential for impacting GI practice and patient care.


Asunto(s)
Gastroenterología , Enfermedades Inflamatorias del Intestino , Recién Nacido , Humanos , Inteligencia Artificial , Microondas , Redes Neurales de la Computación
11.
J Cardiovasc Dev Dis ; 10(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36826532

RESUMEN

Atrial fibrillation (AF) is the most persistent arrhythmia today, with its prevalence increasing exponentially with the rising age of the population. Particularly at elevated heart rates, a functional abnormality known as cardiac alternans can occur prior to the onset of lethal arrhythmias. Cardiac alternans are a beat-to-beat oscillation of electrical activity and the force of cardiac muscle contraction. Extensive evidence has demonstrated that microvolt T-wave alternans can predict ventricular fibrillation vulnerability and the risk of sudden cardiac death. The majority of our knowledge of the mechanisms of alternans stems from studies of ventricular electrophysiology, although recent studies offer promising evidence of the potential of atrial alternans in predicting the risk of AF. Exciting preclinical and clinical studies have demonstrated a link between atrial alternans and the onset of atrial tachyarrhythmias. Here, we provide a comprehensive review of the clinical utility of atrial alternans in identifying the risk and guiding treatment of AF.

12.
Sensors (Basel) ; 22(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36560303

RESUMEN

The search for non-invasive, fast, and low-cost diagnostic tools has gained significant traction among many researchers worldwide. Dielectric properties calculated from microwave signals offer unique insights into biological tissue. Material properties, such as relative permittivity (εr) and conductivity (σ), can vary significantly between healthy and unhealthy tissue types at a given frequency. Understanding this difference in properties is key for identifying the disease state. The frequency-dependent nature of the dielectric measurements results in large datasets, which can be postprocessed using artificial intelligence (AI) methods. In this work, the dielectric properties of liver tissues in three mouse models of liver disease are characterized using dielectric spectroscopy. The measurements are grouped into four categories based on the diets or disease state of the mice, i.e., healthy mice, mice with non-alcoholic steatohepatitis (NASH) induced by choline-deficient high-fat diet, mice with NASH induced by western diet, and mice with liver fibrosis. Multi-class classification machine learning (ML) models are then explored to differentiate the liver tissue groups based on dielectric measurements. The results show that the support vector machine (SVM) model was able to differentiate the tissue groups with an accuracy up to 90%. This technology pipeline, thus, shows great potential for developing the next generation non-invasive diagnostic tools.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/patología , Inteligencia Artificial , Hígado/patología , Cirrosis Hepática , Aprendizaje Automático , Ratones Endogámicos C57BL
13.
J Imaging ; 8(5)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35621913

RESUMEN

The analysis and interpretation of cardiac magnetic resonance (CMR) images are often time-consuming. The automated segmentation of cardiac structures can reduce the time required for image analysis. Spatial similarities between different CMR image types were leveraged to jointly segment multiple sequences using a segmentation model termed a multi-image type UNet (MI-UNet). This model was developed from 72 exams (46% female, mean age 63 ± 11 years) performed on patients with hypertrophic cardiomyopathy. The MI-UNet for steady-state free precession (SSFP) images achieved a superior Dice similarity coefficient (DSC) of 0.92 ± 0.06 compared to 0.87 ± 0.08 for a single-image type UNet (p < 0.001). The MI-UNet for late gadolinium enhancement (LGE) images also had a superior DSC of 0.86 ± 0.11 compared to 0.78 ± 0.11 for a single-image type UNet (p = 0.001). The difference across image types was most evident for the left ventricular myocardium in SSFP images and for both the left ventricular cavity and the left ventricular myocardium in LGE images. For the right ventricle, there were no differences in DCS when comparing the MI-UNet with single-image type UNets. The joint segmentation of multiple image types increases segmentation accuracy for CMR images of the left ventricle compared to single-image models. In clinical practice, the MI-UNet model may expedite the analysis and interpretation of CMR images of multiple types.

14.
Front Physiol ; 12: 783241, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925071

RESUMEN

Cardiac arrhythmias constitute a tremendous burden on healthcare and are the leading cause of mortality worldwide. An alarming number of people have been reported to manifest sudden cardiac death as the first symptom of cardiac arrhythmias, accounting for about 20% of all deaths annually. Furthermore, patients prone to atrial tachyarrhythmias such as atrial flutter and fibrillation often have associated comorbidities including hypertension, ischemic heart disease, valvular cardiomyopathy and increased risk of stroke. Technological advances in electrical stimulation and sensing modalities have led to the proliferation of medical devices including pacemakers and implantable defibrillators, aiming to restore normal cardiac rhythm. However, given the complex spatiotemporal dynamics and non-linearity of the human heart, predicting the onset of arrhythmias and preventing the transition from steady state to unstable rhythms has been an extremely challenging task. Defibrillatory shocks still remain the primary clinical intervention for lethal ventricular arrhythmias, yet patients with implantable cardioverter defibrillators often suffer from inappropriate shocks due to false positives and reduced quality of life. Here, we aim to present a comprehensive review of the current advances in cardiac arrhythmia prediction, prevention and control strategies. We provide an overview of traditional clinical arrhythmia management methods and describe promising potential pacing techniques for predicting the onset of abnormal rhythms and effectively suppressing cardiac arrhythmias. We also offer a clinical perspective on bridging the gap between basic and clinical science that would aid in the assimilation of promising anti-arrhythmic pacing strategies.

16.
Circ Heart Fail ; 14(2): e007530, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33478242

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction is increasing in prevalence, but few effective treatments are available. Elevated left ventricular (LV) diastolic filling pressures represent a key therapeutic target. Pericardial restraint contributes to elevated LV end-diastolic pressure, and acute studies have shown that pericardiotomy attenuates the rise in LV end-diastolic pressure with volume loading. However, whether these acute effects are sustained chronically remains unknown. METHODS: Minimally invasive pericardiotomy was performed percutaneously using a novel device in a porcine model of heart failure with preserved ejection fraction. Hemodynamics were assessed at baseline and following volume loading with pericardium intact, acutely following pericardiotomy, and then again chronically after 4 weeks. Cardiac structure was assessed by magnetic resonance imaging. RESULTS: The increase in LV end-diastolic pressure with volume loading was mitigated by 41% (95% CI, 27%-45%, P<0.0001; ΔLV end-diastolic pressure reduced from +9±3 mm Hg to +5±3 mm Hg, P=0.0003, 95% CI, -2.2 to -5.5). The effect was sustained at 4 weeks (+5±2 mm Hg, P=0.28 versus acute). There was no statistically significant effect of pericardiotomy on ventricular remodeling compared with age-matched controls. None of the animals developed hemodynamic or pathological indicators of pericardial constriction or frank systolic dysfunction. CONCLUSIONS: The acute hemodynamic benefits of pericardiotomy are sustained for at least 4 weeks in a swine model of heart failure with preserved ejection fraction, without excessive chamber remodeling, pericarditis, or clinically significant systolic dysfunction. These data support trials evaluating minimally invasive pericardiotomy as a novel treatment for heart failure with preserved ejection fraction in humans.


Asunto(s)
Diástole/fisiología , Insuficiencia Cardíaca/fisiopatología , Pericardiectomía/métodos , Volumen Sistólico , Presión Ventricular/fisiología , Animales , Presión Sanguínea , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/diagnóstico por imagen , Hemodinámica , Hipertensión Renovascular , Imagen por Resonancia Magnética , Procedimientos Quirúrgicos Mínimamente Invasivos , Arteria Pulmonar , Arteria Renal/cirugía , Sus scrofa , Porcinos
17.
Artículo en Inglés | MEDLINE | ID: mdl-35463194

RESUMEN

Hypertrophic Cardiomyopathy (HCM) is the most common genetic heart disease in the US and is known to cause sudden death (SCD) in young adults. While significant advancements have been made in HCM diagnosis and management, there is a need to identify HCM cases from electronic health record (EHR) data to develop automated tools based on natural language processing guided machine learning (ML) models for accurate HCM case identification to improve management and reduce adverse outcomes of HCM patients. Cardiac Magnetic Resonance (CMR) Imaging, plays a significant role in HCM diagnosis and risk stratification. CMR reports, generated by clinician annotation, offer rich data in the form of cardiac measurements as well as narratives describing interpretation and phenotypic description. The purpose of this study is to develop an NLP-based interpretable model utilizing impressions extracted from CMR reports to automatically identify HCM patients. CMR reports of patients with suspected HCM diagnosis between the years 1995 to 2019 were used in this study. Patients were classified into three categories of yes HCM, no HCM and, possible HCM. A random forest (RF) model was developed to predict the performance of both CMR measurements and impression features to identify HCM patients. The RF model yielded an accuracy of 86% (608 features) and 85% (30 features). These results offer promise for accurate identification of HCM patients using CMR reports from EHR for efficient clinical management transforming health care delivery for these patients.

18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 345-348, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31945912

RESUMEN

Real-time location systems (RTLS) has found extensive application in the healthcare setting, that is shown to improve safety, save cost, and increase patient satisfaction. More specifically, some studies have shown the efficacy of RTLS leading to an improved workflow in the emergency department. However, due to substantial implementation costs of such technologies, hospital administrators show reluctance in RTLS adoption. Our previous preliminary studies with RFID data in the emergency department (ED) demonstrated for the first time the quantification of `patient alone time' and its relationship to outcomes such as 30-day hospitalization. In this study, we use ED RTLS data to analyze patient-care team contact time (PCTCT) and its relationship to the total treatment length of stay (LOS) in ED. An observational cohort study was performed in the ED using RTLS data from Jan 17 - Sep 17, 2017, which included a total of 51,697 patients. PCTCT within the first hour of a patient's placement in a treatment bed was calculated and its relationship to treatment LOS was analyzed while controlling for confounding factors affecting treatment LOS. Results show that treatment LOS is highly correlated with the ED crowding captured by the patient-perprovider ratio, negatively correlated to the physician and resident visit frequency, and positively correlated to nurse visit frequency. The results can inform designing new guidelines for ideal patient-care team interactions and be used to determine optimal ED staffing levels and care team composition for effective care delivery.


Asunto(s)
Aglomeración , Servicio de Urgencia en Hospital , Estudios de Cohortes , Humanos , Tiempo de Internación , Grupo de Atención al Paciente , Estudios Retrospectivos
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 5990-5993, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30441701

RESUMEN

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia affecting approximately 3 million Americans, and is a prognostic marker for stroke, heart failure and even death. Current techniques to discriminate normal sinus rhythm (NSR) and AF from single lead ECG suffer several limitations in terms of sensitivity and specificity using short time ECG data which distorts ECG and many are not suitable for real-time implementation. The purpose of this research was to test the feasibility of discriminating single lead ECG's with normal sinus rhythm (NSR) and AF using intrinsic mode function (IMF) complexity index. 15 sets of ECG's with NSR and AF were obtained from Physionet database. Custom MATLAB® software was written to compute IMF index for each of the data set and compared for statistical significance. The mean IMF index for NSR across 15 data sets was 0.37 ± 0.08, and the mean IMF index for ECG with AF was 0.21 ± 0.07 showing robust discrimination with statistical significance (p<0.01). IMF complexity robustly discriminates single lead ECG with normal sinus rhythm and AF. Further validation of this result is required on a larger dataset. The results also motivate the use of this technique for analysis of other complex cardiac arrhythmias such as ventricular tachycardia (VT) or ventricular fibrillation (VF).


Asunto(s)
Fibrilación Atrial/diagnóstico , Electrocardiografía , Procesamiento de Señales Asistido por Computador , Humanos , Sensibilidad y Especificidad
20.
Amyloid ; 25(2): 101-108, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29733684

RESUMEN

OBJECTIVES: Cardiac involvement is a major determinate of mortality in light chain (AL) amyloidosis. Cardiac magnetic resonance imaging (MRI) feature tracking (FT) strain is a new method for measuring myocardial strain. This study retrospectively evaluated the association of MRI FT strain with all-cause mortality in AL amyloidosis. MATERIALS AND METHODS: Seventy-six patients with newly diagnosed AL amyloidosis underwent cardiac MRI. 75 had images suitable for MRI FT strain analysis. MRI delayed enhancement, morphologic and functional evaluation, cardiac biomarker staging and transthoracic echocardiography were also performed. Subjects' charts were reviewed for all-cause mortality. Cox proportional hazards analysis was used to evaluate survival in univariate and multivariate analysis. RESULTS: There were 52 deaths. Median follow-up of surviving patients was 1.7 years. In univariate analysis, global radial (Hazard Ratio (HR) = 0.95, p <.01), circumferential (HR = 1.09, p < .01) and longitudinal (HR = 1.08, p < .01) strain were associated with all-cause mortality. In separate multivariate models, radial (HR = 0.96, p = .02), circumferential (HR = 1.09, p = .03) and longitudinal strain (HR = 1.07, p = .04) remained prognostic when combined with presence of biomarker stage 3. CONCLUSIONS: MRI FT strain is associated with all-cause mortality in patients with AL amyloidosis.


Asunto(s)
Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/patología , Imagen por Resonancia Magnética/métodos , Anciano , Ecocardiografía , Femenino , Humanos , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas/metabolismo , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA