Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-472526

RESUMEN

Emergence of SARS-CoV-2 as a serious pandemic has altered the global socioeconomic dynamics. The wide prevalence, high death counts and rapid emergence of new variants urge for establishment of research infrastructure to facilitate rapid development of efficient therapeutic modalities and preventive measures. In agreement with this, five SARS-CoV2 strains (ILS01, ILS02, ILS03, ILS15 and ILS24) of four different clades (19A, 19B, 20A and 20B) were isolated from patient swab samples collected during the 1st COVID-19 wave in Odisha, India. The viral isolates were adapted to in-vitro cultures and further characterized to identify strain specific variations in viral growth characteristics. All the five isolates showed substantial amount of virus induced CPE however ILS03 belonging to 20A clade displayed highest level of CPE. Time kinetics experiment revealed spike protein expression was evident after 16th hours post infection in all five isolates. ILS03 induced around 90% of cytotoxicity. Further, the susceptibility of various cell lines (human hepatoma cell line (Huh-7), CaCo2 cell line, HEK-293T cells, Vero, Vero-E6, BHK-21, THP-1 cell line and RAW 264.7 cells) were assessed. Surprisingly, it was found that the human monocyte cells THP-1 and murine macrophage cell line RAW 264.7 were permissive to all the SARS-CoV-2 isolates. The neutralization susceptibility of viral isolates to vaccine-induced antibodies was determined using sera from individuals vaccinated in the Government run vaccine drive in India. The micro-neutralization assay suggested that both Covaxin and Covishield vaccines were equally effective (100% neutralization) against all of the isolates. The whole genome sequencing of culture adapted viral isolates and viral genome from patient oropharyngeal swab sample suggested that repetitive passaging of SARS-CoV2 virus in Vero-E6 cells did not lead to emergence of many mutations during the adaptation in cell culture. Phylogenetic analyses revealed that the five isolates clustered to respective clades. The major goal was to isolate and adapt SARS-CoV-2 viruses in in-vitro cell culture with minimal modification to facilitate research activities involved in understanding the molecular virology, host-virus interactions, application of these strains for drug discovery and animal challenge models development which eventually will contribute towards the development of effective and reliable therapeutics.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21266147

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) is a major global health concern. This virus infects the upper respiratory tract and causes pneumonia-like symptoms. So far, few studies have shown that respiratory infections alter nasopharyngeal (NP) microbiome diversity and enrich opportunistic pathogens. In this study, we have sequenced the 16S rRNA variable regions, V1 through V9, extracted from NP samples of control and COVID-19 (symptomatic and asymptomatic) participants using the Oxford Nanopore technology. Comprehensive bioinformatics analysis investigating the alpha/beta diversities, non-metric multidimensional scaling, correlation studies, canonical correspondence analysis, linear discriminate analysis, and dysbiosis index analysis revealed control and COVID-19-specific NP microbiomes. We observed significant dysbiosis in COVID-19 NP microbiome with abundance of opportunistic pathogens such as Cutibacterium, Corynebacterium, Oerskovia, and Cellulomonas in asymptomatic patients, and of Streptomyces and Mycobacteriaceae family in symptomatic patients. Furthermore, we observed sharp rise in enrichment of opportunistic pathogens in symptomatic patients, with abundance of Mycobacteria and Mycoplasma, which strongly correlated with the occurrences of chest pain and fever. Our findings contribute novel insights regarding emergence of opportunistic pathogens in COVID-19 patients and their relationship with symptoms, suggesting their potential role in coinfections.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21261912

RESUMEN

Vaccine breakthrough infections pose a vast challenge in the eradication of the COVID pandemic situation. Emerging SARS-CoV-2 variants of concern infecting the immunized individuals indicate an ongoing battle between host immunity and natural selection of the pathogen. Our report sheds light on the prominent SARS-CoV-2 variations observed in the isolates from AZD1222/Covishield and BBV152/Covaxin vaccinated subjects.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21257211

RESUMEN

BackgroundThe current global pandemic of Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 led to the investigation with clinical, biochemical, immunological and genomic characterization from the patients to understand the pathophysiology of viral infection. MethodsSamples were collected from six asymptomatic and six symptomatic SARS-CoV-2 confirmed hospitalized patients in Bhubaneswar, Odisha, India. Clinical details, biochemical parameters, treatment regime were collected from hospital, viral load was determined by RT-PCR, levels of cytokines and circulating antibodies in plasma were assessed by Bioplex and isotyping respectively. In addition, the whole genome sequencing of viral strains and mutational analysis were carried out. FindingsAnalysis of the biochemical parameters highlighted the increased levels of C-Reactive protein (CRP), lactate dehydrogenase (LDH), serum SGPT, serum SGOT and ferritin in symptomatic patients indicating that patients with higher levels of few biochemical parameters might experience severe pathophysiological complications after SARS-CoV-2 infection. This was also observed that symptomatic patients were mostly with one or more comorbidities, especially diabetes (66.6%). Surprisingly the virological estimation revealed that there was no significant difference in viral load of oropharyngeal (OP) samples between the two groups. This suggests that the viral load in OP sample does not correlate with the disease severity and both asymptomatic and symptomatic patients are equally capable of transmitting the virus. Whereas, viral load was higher in plasma and serum samples of symptomatic patients suggesting that the development of clinical complications is mostly associated to high viral load in plasma and serum. This also demonstrated that the patients with high viral load in plasma and serum samples were found to develop sufficient amounts of antibodies (IgG, IgM and IgA). Interestingly, the levels of 7 cytokines (IL-6, IL-.1, IP-10, IL-8, IL-10, IFN-2, IL-15) were found to be highly elevated in symptomatic patients, while three cytokines (soluble CD40L, GRO and MDC) were remarkably higher in asymptomatic patients. Therefore, this data suggest that cytokines and chemokines may serve as "predictive indicator" of SARS-CoV-2 infection and contribute to understand the pathogenesis of COVID-19. The whole genome sequence analysis revealed that the current isolates were clustered with 19B, 20A and 20B clades, however acquired 11 additional changes in Orf1ab, spike, Orf3a, Orf8 and nucleocapsid proteins. The data also confirmed that the D614G mutation in spike protein is mostly linked with higher virus replication efficiency and severe SARS-CoV-2 infection as three patients had higher viral load and among them two patients with this mutation passed away. InterpretationThis is the first comprehensive study of SARS CoV-2 patients from India. This will contribute to a better understanding of the pathophysiology of SARS-CoV-2 infection and advance in the implementation of effective disease control strategies. FundingThis study was supported by the core funding of Institute of Life Sciences, Bhubaneswar, Dept of Biotechnology, India. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSAsymptomatic patients are a source of concern as measures taken to control the spread of the virus are severely impacted by their undetectability. Presently, there is an inadequate information about the characteristics of the asymptomatic and symptomatic patients. The association between SARS-CoV-2 viral load, cytokines and risk of disease progression remains unclear in COVID-19 in Indian scenario. PubMed was searched for articles published up to May, 2021, using the keywords "SARS CoV-2 patients in India", or "2019 novel coronavirus patients in India". No published work about the patients data on SARS CoV-2 in Indian scenario could be identified. Added value of this studyThis investigation highlights the ability of both asymptomatic and symptomatic patients to transmit the virus equally. This study also demonstrates that the D614G mutation in the spike protein is associated with severe SARS-CoV-2 infection and enhance levels of inflammatory markers such as CRP and ferritin which can be predictive biomarkers for critical condition of patients. This is the first comprehensive study of SARS CoV-2 patients from India and will contribute to a better understanding of the pathophysiology of SARS-CoV-2 infection by advancing the implementation of effective disease control strategies. Implications of all the available evidenceThe current global pandemic of Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 led to the investigation with clinical, biochemical, immunological and viral genome sequencing to understand the pathophysiology of this virus infection. Samples were collected from six asymptomatic and six symptomatic SARS-CoV-2 confirmed hospitalized patients in Bhubaneswar, Odisha, India. This investigation highlights the ability of both asymptomatic and symptomatic patients to transmit the virus equally. This also demonstrated that the D614G mutation is mostly associated with higher virus replication capacity and severe SARS-CoV-2 infection and enhanced levels of inflammatory markers such as CRP and ferritin which are associated with critical conditions of patients. This is the first comprehensive study of SARS CoV-2 patients from India and will contribute to a better understanding of the pathophysiology of SARS-CoV-2 infection by advancing the implementation of competent disease control strategies.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21253367

RESUMEN

The response to SARS-CoV-2 is largely impacted by the level of exposure and the status of immunity. The nature of protection shown by direct contacts of COVID-19 positive patients is quite intriguing to note. We aimed to study the immune differences reinforcing contact individuals in circumventing the disease. Our observation showed direct contacts of PCR positive patients developed elevated neutralizing antibody titres and cytokine levels. On the other hand, single cell data revealed differential usage of V(D)J genes and unique BCR clonotypes imparting protective immune signatures. Topicsserologic tests, immunoglobulin a, immunoglobulin g, immunoglobulin m, antibody titre; cytokine levels; virus neutralization; V(D)J sequencing; BCR clonotypes

6.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-434371

RESUMEN

Syrian golden hamsters (Mesocricetus auratus) infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) manifests lung pathology that resembles human COVID-19 patients. In this study, efforts were made to check the infectivity of a local SARS-CoV-2 isolate in hamster model and evaluate the differential expression of lung proteins during acute infection and convalescence. The findings of this study confirm the infectivity of this isolate in vivo. Analysis of clinical parameters and tissue samples shows a similar type of pathophysiological manifestation of SARS-CoV-2 infection as reported earlier in COVID-19 patients and hamsters infected with other isolates. The lung-associated pathological changes were very prominent on the 4th day post-infection (dpi), mostly resolved by 14dpi. Here, we carried out quantitative proteomic analysis of the lung tissues from SARS-CoV-2-infected hamsters at day 4 and day 14 post infection. This resulted in the identification of 1,585 differentially expressed proteins of which 68 proteins were significantly altered among both the infected groups. Pathway analysis revealed complement and coagulation cascade, platelet activation, ferroptosis and focal adhesion as the top enriched pathways. In addition, we also identified altered expression of two pulmonary surfactant-associated proteins (Sftpd and Sftpb), known for their protective role in lung function. Together, these findings will aid in the identification of candidate biomarkers and understanding the mechanism(s) involved in SARS-CoV-2 pathogenesis. Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=143 HEIGHT=200 SRC="FIGDIR/small/434371v1_ufig1.gif" ALT="Figure 1"> View larger version (31K): org.highwire.dtl.DTLVardef@1930556org.highwire.dtl.DTLVardef@14376d6org.highwire.dtl.DTLVardef@2f064eorg.highwire.dtl.DTLVardef@1472572_HPS_FORMAT_FIGEXP M_FIG C_FIG

7.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-417519

RESUMEN

During the course of the COVID-19 pandemic, large-scale genome sequencing of SARS-CoV-2 has been useful in tracking its spread and in identifying Variants Of Concern (VOC). Besides, viral and host factors could contribute to variability within a host that can be captured in next-generation sequencing reads as intra-host Single Nucleotide Variations (iSNVs). Analysing 1, 347 samples collected till June 2020, we recorded 18, 146 iSNV sites throughout the SARS-CoV-2 genome. Both, mutations in RdRp as well as APOBEC and ADAR mediated RNA editing seem to contribute to the differential prevalence of iSNVs in hosts. Noteworthy, 41% of all unique iSNVs were reported as SNVs by 30th September 2020 in samples submitted to GISAID, which increased to [~]80% by 30th June 2021. Following this, analysis of another set of 1, 798 samples sequenced in India between November 2020 and May 2021 revealed that majority of the Delta (B.1.617.2) and Kappa (B.1.617.1) variations appeared as iSNVs before getting fixed in the population. We also observe hyper-editing events at functionally critical residues in Spike protein that could alter the antigenicity and may contribute to immune escape. Thus, tracking and functional annotation of iSNVs in ongoing genome surveillance programs could be important for early identification of potential variants of concern and actionable interventions. GRAPHICAL ABSTRACT O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=177 SRC="FIGDIR/small/417519v3_ufig1.gif" ALT="Figure 1"> View larger version (41K): org.highwire.dtl.DTLVardef@12b6ac2org.highwire.dtl.DTLVardef@16df897org.highwire.dtl.DTLVardef@dbbec2org.highwire.dtl.DTLVardef@c8de14_HPS_FORMAT_FIGEXP M_FIG C_FIG

8.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-271601

RESUMEN

SARS-CoV-2 is a RNA Coronavirus responsible for the pandemic of the Severe Acute Respiratory Syndrome (COVID-19). It has affected the whole world including Odisha, a state in eastern India. Many people migrated in the state from different countries as well as states during this SARS-CoV-2 pandemic. As per the protocol laid by ICMR and Health & Family welfare of India, all the suspected cases were tested for SARS-CoV-2 infection. The aim of this study was to analyze the RNA binding domain (RBD) sequence of spike protein from the isolates collected from the throat swab samples of COVID-19 positive cases and further to assess the RBD affinity with ACE2 of different species including human. Whole genome sequencing for 35 clinical SARS-CoV-2 isolates from COVID-19 positive patients was performed using ARTIC amplicon based sequencing. Sequence analysis and phylogenetic analysis was carried out for the Spike and RBD region of all isolates. The interaction between the RBD and ACE2 receptor of five different species was also analysed. Except three isolates, spike region of 32 isolates showed one/multiple alterations in nucleotide bases in comparison to the Wuhan reference strain. One of the identified mutation at 1204 (Ref A, RMRC 22 C) in the RBD of spike protein was identified which depicted a stronger binding affinity with human ACE2 receptor compared to the wild type RBD. Furthermore, RBDs of all the Indian isolates are capable of binding to ACE2 of human, bat, hamster and pangolin. As mutated RBD showed stronger interaction with human ACE2, it could potentially result in higher infectivity. The study shows that RBDs of all the studied isolates have binding affinity for all the five species, which suggests that the virus can infect a wide variety of animals which could also act as natural reservoir for SARS-CoV-2.

9.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-233718

RESUMEN

The PAN-INDIA 1000 SARS-CoV-2 RNA Genome Sequencing Consortium has achieved its initial goal of completing the sequencing of 1000 SARS-CoV-2 genomes from nasopharyngeal and oropharyngeal swabs collected from individuals testing positive for COVID-19 by Real Time PCR. The samples were collected across 10 states covering different zones within India. Given the importance of this information for public health response initiatives investigating transmission of COVID-19, the sequence data is being released in GISAID database. This information will improve our understanding on how the virus is spreading, ultimately helping to interrupt the transmission chains, prevent new cases of infection, and provide impetus to research on intervention measures. This will also provide us with information on evolution of the virus, genetic predisposition (if any) and adaptation to human hosts. One thousand and fifty two sequences were used for phylodynamic, temporal and geographic mutation patterns and haplotype network analyses. Initial results indicate that multiple lineages of SARS-CoV-2 are circulating in India, probably introduced by travel from Europe, USA and East Asia. A2a (20A/B/C) was found to be predominant, along with few parental haplotypes 19A/B. In particular, there is a predominance of the D614G mutation, which is found to be emerging in almost all regions of the country. Additionally, mutations in important regions of the viral genome with significant geographical clustering have also been observed. The temporal haplotype diversities landscape in each region appears to be similar pan India, with haplotype diversities peaking between March-May, while by June A2a (20A/B/C) emerged as the predominant one. Within haplotypes, different states appear to have different proportions. Temporal and geographic patterns in the sequences obtained reveal interesting clustering of mutations. Some mutations are present at particularly high frequencies in one state as compared to others. The negative estimate Tajimas D (D = -2.26817) is consistent with the rapid expansion of SARS-CoV-2 population in India. Detailed mutational analysis across India to understand the gradual emergence of mutants at different regions of the country and its possible implication will help in better disease management.

10.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-217430

RESUMEN

COVID-19 that emerged as a global pandemic is caused by SARS-CoV-2 virus. The virus genome analysis during disease spread reveals about its evolution and transmission. We did whole genome sequencing of 225 clinical strains from the state of Odisha in eastern India using ARTIC protocol-based amplicon sequencing. Phylogenetic analysis identified the presence of all five reported clades 19A, 19B, 20A, 20B and 20C in the population. The analyses revealed two major routes for the introduction of the disease in India i.e. Europe and South-east Asia followed by local transmission. Interestingly, 19B clade was found to be much more prevalent in our sequenced genomes (17%) as compared to other genomes reported so far from India. The haplogroup analysis for clades showed evolution of 19A and 19B in parallel whereas the 20B and 20C appeared to evolve from 20A. Majority of the 19A and 19B clades were present in cases that migrated from Gujarat state in India suggesting it to be one of the major initial points of disease transmission in India during month of March and April. We found that with the time 20A and 20B clades evolved drastically that originated from central Europe. At the same time, it has been observed that 20A and 20B clades depicted selection of four common mutations i.e. 241 C>T (5UTR), P323L in RdRP, F942F in NSP3 and D614G in the spike protein. We found an increase in the concordance of G614 mutation evolution with the viral load in clinical samples as evident from decreased Ct value of spike and Orf1ab gene in qPCR. Molecular modelling and docking analysis identified that D614G mutation enhanced interaction of spike with TMPRSS2 protease, which could impact the shedding of S1 domain and infectivity of the virus in host cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA