Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 82
1.
Vascul Pharmacol ; 155: 107378, 2024 May 09.
Article En | MEDLINE | ID: mdl-38729253

OBJECTIVES: Flavonoids are polyphenolic compounds found in a wide range of foods, including fruits, vegetables, tea plants, and other natural products. They have been mainly classified as flavanols, flavonols, flavones, isoflavones, flavanones, and flavanonols. In this comprehensive review, we will discuss preclinical pieces of evidence on the potential of flavonoids for the prevention/treatment of myocardial ischemia-reperfusion (IR) injury. KEY FINDINGS: In-vitro and in-vivo studies have shown that flavonoids play an important role in preventing ischemic heart disease (IHD). They possess strong anti-oxidant, anti-inflammatory, anti-bacterial, anti-thrombotic, anti-apoptotic, and anti-carcinogenic activities. In addition, at a molecular level, flavonoids also modulate various pathways like MAPK, NFκB etc. to confer beneficial effects. SUMMARY: The current review of flavonoids in myocardial ischemia-reperfusion injury furnishes updated information that could drive future research. The in-vitro and in-vivo experiments have demonstrated various favourable pharmacological properties of flavonoids. This review provides valuable information to conduct clinical studies, validating the safety aspects of flavonoids in the clinical domain.

2.
Eur J Pharmacol ; 970: 176465, 2024 May 05.
Article En | MEDLINE | ID: mdl-38479722

BACKGROUND: Arglabin is a plant alkaloid (sesquiterpene lactone) that is used as an anticancer drug. It has potential anti-diabetic and anti-atherogenic effects. PURPOSE: Arglabin has drawn particular attention because of its therapeutic effects as an anti-inflammatory agent in multiple diseases. Since arglabin inhibits Epidermal Growth Factor Receptor (EGFR) tyrosine kinase, concerns for cardiotoxic effects are valid. The present study was designed to investigate the protective effects of arglabin on the myocardium. STUDY DESIGN: This study was designed to evaluate the effect of arglabin on the myocardium in an experimental model of myocardial necrosis in rats. Different doses of arglabin (2.5, 5, and 10 µg/kg) were investigated as pre-treatment for 21 days in the isoproterenol (ISO) model of myocardial necrosis groups and per se groups. METHODS: On the 22nd day, hemodynamic, histopathological, electron microscopy, oxidative stress markers, inflammatory mediators, apoptotic markers, inflammasome mediators, and Western blot analysis were performed to evaluate the effects of arglabin. RESULTS: Arglabin pre-treatment showed improvement in hemodynamic parameters and histopathological findings at low doses in isoproterenol-induced myocardial necrosis model of rats. Arglabin administration altered myocardial structure and modulated myocardial function via activation of NFκB/MAPK pathway that led to myocardial injury with an increase in dose. CONCLUSION: Arglabin imparted partial cardio-protection via an inflammasome-dependent pathway and mediated injury through the inflammasome-independent pathway.


Heart Injuries , Myocardial Infarction , Sesquiterpenes, Guaiane , Rats , Animals , Inflammasomes/metabolism , Isoproterenol/pharmacology , Heart , Myocardial Infarction/metabolism , Myocardium/metabolism , Oxidative Stress , Heart Injuries/metabolism
3.
Article En | MEDLINE | ID: mdl-37873913

BACKGROUND: Diabetes mellitus (DM) is characterized by elevated blood glucose levels either due to insufficient insulin production, defective insulin action, or both. It affects nearly 537 million individuals worldwide. Pharmacological treatment involves the use of oral antidiabetic agents as mono or combination therapy that effectively aids in controlling hyperglycemia. Despite providing therapeutic benefits, these medications limit their use owing to adverse side effects. Certain natural products, including essential oils, have promising anti-diabetic properties. OBJECTIVE: The present study explores the effectiveness of two polyherbal oils and their compound towards the treatment of DM based on an In-silico approach to drug investigations. METHODS: Compounds present in the polyherbal oil formulation were identified using GCMS/MS analysis. Selected compounds undergo molecular docking with the receptor, and proteins play an important role in DM. The potential compounds showing higher interactions than the known inhibitors or inducers were evaluated using molecular dynamic simulations RMSD values. RESULTS: The compounds identified through GC-MS analysis possess anti-diabetic and antiinflammatory properties. With the aid of in silico prediction methods, compounds such as geraniol, cinnamaldehyde, anethole, caryophyllene, terpinyl acetate, cymene, linalool, menthol, Phenol,2-methoxy-3-(2-propenyl), and 2,6- octadienal,3,7-dimethyl were identified as strong binders of GLUT4 and insulin receptor proteins. Geraniol and Phenol,2-methoxy-3-(2-propenyl) interaction with GLUT4 were of particular importance owing to their conformational stability. CONCLUSION: Our data suggest an agonistic effect of compounds on target proteins aiding in enhanced insulin activity and could serve as a potential anti-diabetic agent.

4.
J Nutr Biochem ; 113: 109246, 2023 03.
Article En | MEDLINE | ID: mdl-36496061

Vitamin D deficiency is common and linked to poor prognosis in pulmonary arterial hypertension (PAH). We investigated the differential effect of basal vitamin D levels in monocrotaline (MCT) induced PAH in normal and vitamin D deficient (VDD) rats. Rats were fed a VDD diet and exposed to filtered fluorescent light to deplete vitamin D. Normal rats were pretreated with vitamin D 100 IU/d and treated with vitamin D 100 and 200 IU/d, while VDD rats received vitamin D 100 IU/d. Vitamin D receptor (VDR) silencing was done in human umbilical vein endothelial cells (HUVECs) using VDR siRNA. Calcitriol (50 nM/mL) was added to human pulmonary artery smooth muscle cells (HPASMCs) and HUVECs before and after the exposure to TGF-ß (10 ng/mL). Vitamin D 100 IU/d pretreatment in normal rats up-regulated the expression of eNOS and inhibited endothelial to mesenchymal transition significantly and maximally. Vitamin D 100 IU/d treatment in VDD rats was comparable to vitamin D 200 IU/d treated normal rats. These effects were significantly attenuated by L-NAME (20 mg/kg), a potent eNOS inhibitor. Exposure to TGF- ß significantly reduced the expression of eNOS and increased the mesenchymal marker expression in normal and VDR-silenced HUVECs and HPASMCs, which were averted by treatment and maximally inhibited by pretreatment with calcitriol (50 nM). To conclude, this study provided novel evidence suggesting the beneficial role of higher basal vitamin D levels, which are inversely linked with PAH severity.


Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Vitamin D Deficiency , Rats , Humans , Animals , Pulmonary Arterial Hypertension/metabolism , Monocrotaline/toxicity , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/metabolism , Rats, Sprague-Dawley , Vitamin D/pharmacology , Vitamin D/metabolism , Calcitriol/pharmacology , Signal Transduction , Pulmonary Artery , Human Umbilical Vein Endothelial Cells/metabolism , Vitamins/pharmacology , Vitamins/metabolism , Transforming Growth Factor beta/metabolism
5.
Chem Biol Interact ; 367: 110179, 2022 Nov 01.
Article En | MEDLINE | ID: mdl-36113631

Currently, there are no FDA approved antiviral drugs available to treat COVID-19 patients. Also, due to emergence of new SARS-CoV-2 variants, the protective efficacy of vaccines could be reduced, hence it is urgent to have alternative treatments for combating the SARS-CoV-2 infection. Since, there is a long-standing history of herbal medicine in the treatment of respiratory diseases. In the present study, we investigated two polyherbal oil blend viz. Sudarshan AV and Elixir AV (SAV and EAV) in inhibiting SARS-COV-2. From GC-MS analysis of polyherbal oils (SAV and EAV) a total of 11 active compounds were selected, on the basis of their abundance and activity. Further, from the molecular docking studies, we found an inhibitory effect of these compounds on viral envelope and membrane, spike proteins whilst an agonistic effect with human host receptor angiotensin-converting enzyme 2 (ACE2) implicating the crucial role of the individual compound in resistance of SARS-CoV-2. Since, the in-silico results suggest that polyherbal oil (SAV and EAV) contributes in preventing the entry of SARS-CoV-2 into the human body, we further investigated the efficacy of polyherbal formulated essential oil (FEO; SAV & EAV) in prevention and treatment of COVID-19 in hamster model. The male golden Syrian hamsters (n = 23) were divided into 5 groups i.e., Group 1: Control (n = 3); Group 2: Infected (n = 5); Group 3: Infected + Remdesivir (n = 5); Group 4: Infected + FEO (n = 5) and Group 5: Prophylactic FEO + Infected (n = 5). In both treatment and prophylactic groups, the FEO's significantly reduced the lung injury investigated histo-pathologically and viral load expression measured by real time PCR in comparison to infected hamsters. Furthermore, cytokines expression analysis clearly highlighted the efficacy of FEO's due to its anti-inflammatory activity and overall protection in treatment groups. In conclusion, the FEO (SAV & EAV) seem to be potent in both prevention and treatment of COVID-19 and related lung injury.


COVID-19 Drug Treatment , COVID-19 , Lung Injury , Oils, Volatile , Angiotensin-Converting Enzyme 2 , Animals , Anti-Inflammatory Agents , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/prevention & control , Cricetinae , Cytokines , Humans , Lung Injury/drug therapy , Male , Molecular Docking Simulation , Peptidyl-Dipeptidase A , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
6.
Am J Med Sci ; 364(3): 316-326, 2022 09.
Article En | MEDLINE | ID: mdl-35452629

BACKGROUND: Host biomarkers are needed to monitor the response to anti-tubercular therapy (ATT) for ensuring effective therapy and preventing drug-resistant tuberculosis. We sought to find the correlation between the serum levels of SAA1 and IL-1beta in response to ATT in adult patients with pulmonary TB (PTB) or extra-pulmonary TB (EPTB). METHODS: Blood samples of 32 patients with PTB and 28 patients with EPTB were analyzed. The blood samples were collected at baseline, two months and six months following treatment initiation. SAA1 and IL-1beta levels were measured by enzyme linked immunosorbent assay (ELISA). RESULTS: In the PTB group, the mean levels of SAA1 decreased significantly (p <0.001) after the intensive phase (two months) and continuous phase (six months) of ATT in comparison with the baseline value. IL-1beta values also decreased significantly (p = 0.005) after the intensive phase (two months) compared with the baseline values. In the EPTB group, there was a significant reduction in the mean serum level of SAA1 (p <0.001) and IL-1beta (p = 0.001) after the intensive phase (two months) in comparison with the baseline value, whereas the reduction at six months was not significant. CONCLUSIONS: SAA1 and IL-1beta may be useful potential treatment-monitoring biomarkers, especially in the intensive phase of therapy for both PTB and EPTB.


Tuberculosis, Pulmonary , Adult , Biomarkers , Enzyme-Linked Immunosorbent Assay , Humans , Interleukin-1beta , Tuberculosis, Pulmonary/drug therapy
7.
J Biochem Mol Toxicol ; 35(7): e22785, 2021 Jul.
Article En | MEDLINE | ID: mdl-33860986

Azilsartan is found to be more potent than other angiotensin receptor blockers in reducing blood pressure. However, its effect on the heart following myocardial infarction remains to be established. For the first time, we investigated the peroxisome proliferator-activated receptor-γ (PPAR-γ) agonistic and cardioprotective properties of azilsartan. Computational modeling studies of interactions between azilsartan and PPAR-γ revealed azilsartan as an agonist of PPAR-γ and showed the mechanism of azilsartan in cardioprotection. Our study compared the cardioprotective potential of telmisartan to that of azilsartan in a murine model of myocardial ischemia-reperfusion injury by comparing their antioxidant, ant apoptotic, anti-inflammatory, mitogen-activated protein kinase (MAPK)-modulating ability, and PPAR-γ agonistic activity. Male Wistar rats were grouped into four to receive vehicle (dimethyl sulfoxide [0.05%] 2 ml/kg) telmisartan (10 mg/kg p.o.), azilsartan (10 mg/kg p.o.) or azilsartan with specific PPAR-γ blocker, GW 9662 for 28 days. Ischemia was induced for 45 min on the 29th day followed by 60 min of reperfusion. Telmisartan and azilsartan pretreatment significantly nearly normalized cardiac parameters and preserved structural changes. Both drugs inhibited oxidative burst, inflammation, as well as cell death by modulating apoptotic protein expression along with reduction in 4',6-diamidino-2-phenylindole/terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. An increment in pro-survival kinase ERK paralleled with a reduction in p38 and JNK was also revealed by MAPK pathway studies, after administration of these drugs. Interestingly, the aforementioned changes induced by both drugs were reversed by administration of the specific PPAR-γ antagonist, GW9662. However, we found that azilsartan upregulated PPAR-γ to a lesser extent as compared to telmisartan and the latter may be preferred in hypertensive patients at risk of myocardial infarction.


Benzimidazoles/pharmacology , Cardiotonic Agents/pharmacology , MAP Kinase Signaling System/drug effects , Myocardial Reperfusion Injury , Myocardium , Oxadiazoles/pharmacology , Telmisartan/pharmacology , Animals , Disease Models, Animal , Male , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Myocardium/pathology , Rats , Rats, Wistar
8.
Drug Dev Res ; 82(4): 589-597, 2021 06.
Article En | MEDLINE | ID: mdl-33458850

The role of Saxagliptin in diabetes-associated cardiovascular complications is controversial. This study aimed to investigate whether Saxagliptin could prevent Isoproterenol-induced myocardial changes in diabetic rats and to identify the possible mechanism as well. The high-fat diet/low-dose Streptozotocin-induced type 2 diabetic rats were divided into 3 groups: the control group (0.25% CMC for 28 days), the Isoproterenol group (85 mg/kg Isoproterenol for the last 2 days plus 0.25% CMC for 28 days), and the treatment group (10 mg/kg Saxagliptin for 28 days plus 85 mg/kg Isoproterenol for the last 2 days). Hemodynamic measurements were performed, and samples were examined for RAGE and NF-κB expressions, histopathological and ultrastructural changes, AGEs level, myocardial injury markers, oxidative stress, and apoptosis. Saxagliptin significantly recovered cardiac function (p < .001), reverted myocardial injury and oxidative stress levels back to the control value (p < .05 to p < .001). Saxagliptin alleviates Isoproterenol-induced myocardial injury in diabetic rats by suppressing AGE-RAGE pathway.


Adamantane/analogs & derivatives , Diabetes Complications/prevention & control , Dipeptides/pharmacology , Heart Diseases/prevention & control , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction/drug effects , Adamantane/pharmacology , Animals , Apoptosis , Diabetes Mellitus, Experimental , Isoproterenol/toxicity , Male , NF-kappa B/metabolism , Oxidative Stress , Rats , Rats, Wistar
9.
Curr Ther Res Clin Exp ; 93: 100610, 2020.
Article En | MEDLINE | ID: mdl-33245296

BACKGROUND: Metastatic burden and aggressive behavior determine severity stratification and guide treatment decisions in prostate cancer (PCa). Monoamine oxidase A (MAOA) may promote tumor burden and drug/castration resistance in PCa. A positive association will pave the way for MAOA inhibitors such as moclobemide for PCa therapy. OBJECTIVE: To analyze MAOA in peripheral blood mononuclear cells qualitatively and p38, c-Jun N-terminal kinases, nuclear factor kappa B, and their phosphorylated forms, vascular endothelial growth factor (angiogenesis), transforming growth factor beta, interleukin 6, and tumor necrosis factor-α (cytokines), Bcl-2 associated X, B-cell lymphoma 2, and P53 (apoptosis), prostate-specific membrane antigen, and epithelial cell adhesion molecules (surface markers) in plasma of patients with PCa. METHODS: This was a 1-year pilot study in which patients with PCa were recruited and stratified into 2 groups and subgroups: treatment-naive with (M1) (n = 23) or without (M0) (n = 23) bone metastasis; hormone-sensitive prostate cancer (n = 26) or hormone/castration-resistant prostate cancer (n = 26). MAOA was detected using ELISA and other proteins were detected using immunoblotting technique. RESULTS: MAOA was detected in 8.6% of M0 compared with 30.4% of M1 patients, and in 7.7% of hormone-sensitive compared with 27% of hormone/castration resistant PCa patients, associating it with bone metastasis and castration resistance. Multivariable regression analysis showed a correlation of MAOA with serum prostate-specific antigen, a marker for progression in PCa (Pearson correlation coefficient r = 0.30; P < 0.01). In patients with positive MAOA, there was overexpression of p38, phosphorylated-p38, c-Jun N-terminal kinases, phosphorylated c-Jun N-terminal kinases, nuclear factor kappa B, phosphorylated nuclear factor kappa B, transforming growth factor beta, vascular endothelial growth factor, interleukin 6, tumor necrosis factor α, Bcl-2 associated X, B-cell lymphoma 2, prostate-specific membrane antigen, and epithelial cell adhesion molecule in M1 compared with M0 group patients, associating these proteins with tumor burden. Overexpression of Bcl-2 associated X, tumor protein 53, c-Jun N-terminal kinases, nuclear factor kappa B, transforming growth factor beta, vascular endothelial growth factor, and prostate-specific membrane antigen and underexpression of B-cell lymphoma 2 and phosphorylated nuclear factor kappa B were observed in hormone-sensitive prostate cancer compared with hormone/castration-resistant prostate cancer, associating these proteins with castration resistance. CONCLUSIONS: Association of key molecules of oncogenesis and metastasis with MAOA suggests that MAOA inhibitors such as moclobemide might be effective in the management of PCa.

10.
Arch Biochem Biophys ; 694: 108572, 2020 11 15.
Article En | MEDLINE | ID: mdl-32926843

The methodology exploring the cardioprotective potential of the flavonoid Fisetin through its ability to modulate PPAR-γ was unraveled in the present study. Computational modelling through molecular docking based binding study of interactions between Fiestin and PPAR-γ revealed the potential role of Fisetin as an agonist of PPAR-γ. A murine model of cardiac ischemia-reperfusion injury was used to explore this further. Male Wistar Rats were randomly assigned to five groups. Fisetin (20 mg/kg; p. o) was administered for 28 days. Ischemia was induced for 45 min on the 29th day followed by 60 min of reperfusion. Fisetin pretreatment upregulated the expression of PPAR-γ in heart tissue significantly Cardioprotection was assessed by measurement of hemodynamic parameters, infarct size, ELISA for oxidative stress, immunohistochemistry and TUNEL assay for apoptosis, and western blot analysis for MAPK proteins and inflammation. PPAR-γ activation by fisetin led to significantly reduced infarct size, suppression of oxidative stress, reduction of cardiac injury markers, alleviation of inflammation, and inhibition of apoptosis The MAPK-based molecular mechanism showed a rise in a key prosurvival kinase, ERK1/ERK2 and suppression of JNK and p38 proteins. The aforementioned beneficial findings of fisetin were reversed on the administration of a specific antagonist of PPAR-γ. In conclusion, through our experiments, we have proved that fisetin protects the heart against ischemia-reperfusion injury and the evident cardioprotection is PPAR-γ dependant. In conclusion, our study has revealed a prime mechanism involved in the cardioprotective effects of fisetin. Hence, Fisetin may be evaluated in further clinical studies as a cardioprotective agent in patients undergoing reperfusion interventions.


Cardiotonic Agents/therapeutic use , Flavonoids/therapeutic use , Myocardial Infarction/drug therapy , Myocardial Reperfusion Injury/prevention & control , PPAR gamma/agonists , Animals , Cardiotonic Agents/metabolism , Flavonoids/metabolism , Flavonols , Heart/drug effects , Humans , MAP Kinase Signaling System/drug effects , Male , Mice , Molecular Docking Simulation , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/pathology , Myocardium/pathology , Oxidative Stress/drug effects , PPAR gamma/metabolism , Rats, Wistar , Up-Regulation
12.
Eur J Pharmacol ; 883: 173389, 2020 Sep 15.
Article En | MEDLINE | ID: mdl-32707190

Pharmacological strategies aimed at co-activating peroxisome proliferator-activated receptor-gamma (PPAR-γ)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway have shown promising results in alleviating myocardial injury. The aim of the study was to evaluate the role of chrysin, a PPAR-γ agonist, in ischemia-reperfusion (IR)-induced myocardial infarction (MI) in rats and to explore the molecular mechanism driving this activity. To evaluate this hypothesis, chrysin (60 mg/kg, orally), PPAR-γ antagonist (GW9662, 1 mg/kg, intraperitoneally), or both were administered to rats for 28 days. On the 29th day, one-stage ligation of left anterior descending coronary artery for 45 min followed by 60 min of reperfusion was performed. Chrysin significantly decreased infarct size and improved cardiac functions following IR-induced MI. This improvement was corroborated by augmented PPAR-γ/Nrf2 expression as confirmed by immunohistochemistry and western blotting analysis. Chrysin exhibited strong anti-oxidant property as demonstrated by increased GSH and CAT levels and decreased 8-OHdG and TBARS levels. Our findings also imply that chrysin significantly inhibited inflammatory response as validated by decreased NF-κB, IKK-ß, CRP, TNF-α and MPO levels. In addition, chrysin decreased TUNEL/DAPI positivity, a marker of apoptotic response and normalized cardiac injury markers. The histopathological and ultrastructural analysis further supported the functional and biochemical outcomes, showing preserved myocardial architecture. Intriguingly, co-administration with GW9662 significantly diminished the cardioprotective effect of chrysin as demonstrated by depressed myocardial function, decreased PPAR-γ/Nrf2 expression and increased oxidative stress. In conclusion, the present study demonstrates that co-activation of PPAR-γ/Nrf2 by chrysin may be crucial for its cardioprotective effect.


Cardiovascular Agents/pharmacology , Flavonoids/pharmacology , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/drug effects , NF-E2-Related Factor 2/metabolism , PPAR gamma/agonists , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Disease Models, Animal , Hemodynamics/drug effects , Inflammation Mediators/metabolism , Male , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/ultrastructure , Oxidative Stress/drug effects , PPAR gamma/metabolism , Rats, Wistar , Signal Transduction , Ventricular Function, Left/drug effects
13.
Pharmacol Rep ; 72(4): 877-889, 2020 Aug.
Article En | MEDLINE | ID: mdl-32048260

BACKGROUND: Oxidative stress plays an important role in the pathogenesis of myocardial ischemia-reperfusion (IR) injury. Morin, a bioflavonoid, has demonstrated antioxidant, anti-inflammatory and other diverse pharmacological activities in various experimental models such as isoproterenol-induced myocardial injury, doxorubicin-induced cardiotoxicity and neurotoxicity, as well as cisplatin-induced nephrotoxicity. Thus, this study aimed to evaluate the effect of morin in myocardial IR injury model and its underlying mechanisms. METHOD: To accomplish this, male albino Wistar rats were pre-treated with morin (40 and 80 mg/kg; po) for 28 days and on 29th day, rats experienced 45-min myocardial ischemia followed by 60-min reperfusion. RESULTS: In comparison to IR-control group, morin pre-treatment significantly normalized hemodynamic parameters, restored antioxidant status, improved pathological changes, reduced the release of cardiac injury markers, inhibited inflammation (TNF-α/IL-6/NFκB/IKKß) and apoptosis (increased Bcl-2, decreased Bax/Caspase-3 and TUNEL positivity) in the myocardium. This improvement in antioxidant, inflammation and anti-apoptosis markers could be due to downregulation of SAPK (p38/JNK) pathway and upregulation of survival kinase, i.e. RISK pathway (ERK/eNOS) in the myocardium. CONCLUSION: Thus, morin attenuated myocardial IR injury in rats by regulation of RISK/SAPK pathways.


Antioxidants/therapeutic use , Flavonoids/therapeutic use , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Reactive Oxygen Species/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Antioxidants/pharmacology , Dose-Response Relationship, Drug , Flavonoids/pharmacology , Male , Oxidative Stress/drug effects , Oxidative Stress/physiology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
14.
J Biochem Mol Toxicol ; 34(2): e22431, 2020 Feb.
Article En | MEDLINE | ID: mdl-31833131

Cisplatin-induced nephrotoxicity persists as a clinical problem despite several supportive measures to alleviate renal damage. Daidzein (DZ), a dietary isoflavone having antioxidant and anti-inflammatory activity, is investigated in this study for protective effects against cisplatin-induced renal injury in rats. DZ (25, 50, or 100 mg/kg; intraperitoneally; 10 days) was administered along with Cisplatin, single dose, on the 7th day of the experiment. On the 11th day, the rats were euthanized, and different samples were collected for analysis. Biochemical, histopathological, and molecular parameters were assessed to evaluate the effect of daidzein. Cisplatin injection resulted in renal dysfunction, lipid peroxidation that led to consumption of antioxidants, exaggerated apoptosis, and inflammation. These changes were associated with increase in the signaling proteins. DZ attenuated the toxic effects of cisplatin on the kidney at 100 mg/kg dose. The study concludes with the finding that daidzein imparts protection against the nephrotoxic effect of Cisplatin and can be considered as a novel, potential therapy.


Acute Kidney Injury/chemically induced , Acute Kidney Injury/diet therapy , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Apoptosis/drug effects , Cisplatin/pharmacology , Isoflavones/therapeutic use , MAP Kinase Signaling System/drug effects , Nephritis/diet therapy , Oxidative Stress/drug effects , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Antioxidants/administration & dosage , Antioxidants/pharmacology , Cisplatin/adverse effects , Cytokines/blood , Isoflavones/administration & dosage , Isoflavones/pharmacology , Kidney/drug effects , Lipid Peroxidation/drug effects , Liver/drug effects , Male , Rats , Treatment Outcome
15.
J Pharm Pharmacol ; 71(7): 1072-1081, 2019 Jul.
Article En | MEDLINE | ID: mdl-30957246

OBJECTIVE: Anti-neoplastic drug cisplatin is prescribed widely for treatment of a variety of malignancies. Its use has been restricted lately due to severe renal toxicity. The purpose of current study was to investigate the effect of pitavastatin (a hypolipidaemic drug) in cisplatin-induced acute kidney injury in rats. METHOD: Male Wistar rats (150-200 g) were treated with different doses of pitavastatin (0.16, 0.32 and 0.64 mg/kg per day p.o.; 10 days). On 7th day of the study, rats were administered cisplatin (8 mg/kg i.p.). Rats were euthanized (11th day), and blood and tissues were processed to evaluate biochemical, histopathological and ultrastructural parameters along with the analysis of immunohistochemistry and DNA-fragmentation studies. Protein expressions were analysed to demonstrate the underlying molecular mechanisms. KEY FINDINGS: In the study group with cisplatin insult, KFT parameters were found to be elevated, concentration of apoptotic markers was found to be increased, histopathological and ultramicroscopical architecture was found to be distorted and the expression of MAPK proteins was also found to be elevated as compared to the normal group rats. Pitavastatin treatment alleviated all these anomalies. CONCLUSION: Cisplatin-induced acute renal injury was improved on administration of pitavastatin via inhibition of MAPK and apoptotic pathway.


Antineoplastic Agents/adverse effects , Apoptosis/drug effects , Cisplatin/adverse effects , MAP Kinase Signaling System/drug effects , Quinolines/pharmacology , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Kidney/metabolism , Kidney/pathology , Kidney/ultrastructure , Male , Rats , Rats, Wistar
16.
Mol Biol Rep ; 46(1): 1139-1148, 2019 Feb.
Article En | MEDLINE | ID: mdl-30666500

Oxidative stress plays a major role in myocardial injury. Morin, a bioflavonoid has known to possess various biological activities in previous studies. Hence, this study evaluated the cardioprotective mechanism(s) of Morin against isoproterenol induced myocardial necrosis in rats. Male albino Wistar rats were divided into five groups (n = 8) i.e., I (normal), II (ISO-control), III, IV and V (morin 20, 40 and 80 mg/kg respectively). Groups III, IV and V were treated orally with daily doses of Morin accordingly for 28 days. On 26th and 27th day, a single injection of isoproterenol was injected (85 mg/kg s.c.) at 24 h interval to induce myocardial necrosis in group II, III, IV and V. On 28th day, hemodynamic parameters were evaluated, animals were euthanised and heart was excised for measurement of various parameters. In ISO-control rats, there was deterioration of hemodynamic parameters, decreased anti-oxidants levels, increased cardiac injury markers and pro-inflammatory cytokines (TNF-α and IL-6). Also, there was increased level of Bax, Caspase-3, p-JNK, p-38 and NF-κB and decreased expression of Bcl-2 and p-ERK1/2 in ISO-C group. Morin dose-dependently improved hemodynamic profile, increased anti-oxidant levels, normalized myocardial architecture and reduced inflammatory markers and apoptosis. Furthermore, immunoblot analysis of MAPK pathway proteins demonstrated the mechanism responsible for anti-apoptotic and anti-inflammatory potential of morin. Thus, this study substantiated the beneficial effect of Morin by virtue of its modulation of MAPK pathway in myocardial injury.


Flavonoids/pharmacology , Myocardial Infarction/drug therapy , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Flavonoids/therapeutic use , Heart/drug effects , Isoproterenol/pharmacology , MAP Kinase Signaling System/drug effects , Male , Myocardial Infarction/metabolism , Myocardium/metabolism , NF-kappa B/drug effects , Oxidative Stress/drug effects , Rats , Rats, Wistar
17.
Phytomedicine ; 56: 147-155, 2019 Mar 15.
Article En | MEDLINE | ID: mdl-30668335

BACKGROUND: The therapeutic options for the reducing the damage caused by myocardial ischemia are limited and not devoid of adverse effects. The role of the flavanoid, fisetin, predominantly found in strawberry and apple, is yet to be explored in the heart. STUDY DESIGN: Male Wistar rats (n = 48) were administered fisetin (10, 20 & 40 mg/kg/day, orally) or vehicle for 28 days while ISO, 85 mg/kg, subcutaneously, was also administered at 24 h interval on the 27th and 28th day. On the 29th day, rats were anaesthetized and right carotid artery was cannulated to record hemodynamic parameters. Subsequently, blood sample was collected and heart was removed to evaluate various parameters. RESULTS: Fisetin at doses of 10 and 20 mg/kg reversed ISO induced detrimental alterations in blood pressure and left ventricular pressures and reduced the myocardial injury markers CK-MB and LDH in the serum. These findings were supported by amelioration of ISO induced histological and ultrastructural damage by fisetin. The disequilibrium in the levels of pro and anti oxidants in the myocardial tissue caused by ISO was also normalized Furthermore, apoptosis was evident from enhanced DNA fragmentation and raised pro-apoptotic proteins (bax, caspase-3, cytochrome-c) as well as suppressed anti-apoptotic protein (Bcl-2) in case of ISO treatment which again was reversed by fisetin. A molecular mechanism for this protection was elucidated as downregulation of RAGE and NF-κB However fisetin at 40 mg/kg revealed a deteriorating effect which was similar to ISO group of rats. CONCLUSION: Hence, through our study, the role of fisetin in cardioprotection has been uncovered via a molecular pathway.


Flavonoids/pharmacology , Isoproterenol/adverse effects , Myocardial Ischemia/drug therapy , Myocarditis/drug therapy , Oxidative Stress/drug effects , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Flavonols , Heart/drug effects , Male , Myocardial Ischemia/chemically induced , Myocardium/metabolism , Myocardium/ultrastructure , NF-kappa B/metabolism , Rats, Wistar , Receptor for Advanced Glycation End Products/metabolism
18.
J Biochem Mol Toxicol ; 33(5): e22283, 2019 May.
Article En | MEDLINE | ID: mdl-30623541

Hesperidin (HES), a flavanone glycoside, predominant in citrus fruits, has an agonistic activity on peroxisome proliferator-activated receptor gamma (PPAR-γ). PPAR-γ is an inhibitor of cardiac hypertrophy (CH) signaling pathways. In this study, we investigated the cardioprotective effect of HES in isoproterenol (ISO)-induced CH through PPAR-γ agonistic activity. For this, male albino Wistar rats were divided into six groups (n = 6), that is, normal, ISO-control, HES treatment group (200 mg kg-1 ; p.o.), HES per se (200 mg kg-1 ; p.o.), enalapril treatment group (30 mg kg-1 ; p.o.), and combination group (HES 200 mg kg-1 ; p.o.+enalapril 30 mg kg-1 ; p.o.). ISO (3 mg kg-1 ; s.c.) was administered to all groups except normal and per se to induce CH. HES or enalapril treatment of 28 days significantly attenuated pathological changes, improved cardiac hemodynamics, suppressed oxidative stress, and apoptosis along with an increased PPAR-γ expression. The combination of enalapril with HES exhibited an effect similar to that of HES or enalapril alone on all the aforementioned parameters. Therefore, HES may be further evaluated as a promising molecule for the alleviation of CH.


Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Cardiomegaly/prevention & control , Cardiotonic Agents/pharmacology , Hesperidin/pharmacology , PPAR gamma/agonists , Animals , Cardiomegaly/chemically induced , Cardiomegaly/metabolism , Gene Expression Regulation/drug effects , Isoproterenol/adverse effects , Isoproterenol/pharmacology , Male , Oxidative Stress/drug effects , PPAR gamma/biosynthesis , Rats , Rats, Wistar
19.
Mol Cell Biochem ; 452(1-2): 141-152, 2019 Feb.
Article En | MEDLINE | ID: mdl-30083783

Cisplatin has been confined due to the reported cases of nephrotoxicity. In the present study, an active xanthone, Mangiferin (from Mangifera indica) was investigated for its defensive role in cisplatin-induced nephrotoxicity. Male wistar albino rats were divided into six groups i.e., group 1 (normal); group 2 (cisplatin control); group 3, 4, and 5 (mangiferin 10, 20, and 40 mg/kg, i.p.); and per se (40 mg/kg; i.p.). The treatment was given for 10 days. On day 7, single dose of cisplatin 8 mg/kg i.p. was administered to induce nephrotoxicity in all groups except normal and per se. On day 11, animals were anesthetized, blood was taken from heart and serum was separated. Thereafter, rats were sacrificed and kidneys were isolated and preserved for histopathological, ultrastructural, immunohistochemical, and western blot analysis. Cisplatin control group showed significant impairment in renal function due to increased inflammation and oxidative stress which was also confirmed by histopathology and MAPK pathway proteins expression. However, pretreatment with mangiferin 20 and 40 mg/kg significantly reversed the renal function along with the structural changes and the levels of antioxidants. Mangiferin treatment attenuated DNA damage and apoptotic pathway.


Acute Kidney Injury/drug therapy , Cisplatin/toxicity , MAP Kinase Signaling System/drug effects , Xanthones/pharmacology , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Animals , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Biomarkers/analysis , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar
20.
Am J Transl Res ; 10(9): 2810-2821, 2018.
Article En | MEDLINE | ID: mdl-30323868

We investigated the effect of eplerenone on myocardial infarcted diabetic rats via modulation of the PI3K/Akt pathway and its downstream target GSK-3ß. Diabetes was induced by administration of a single dose of streptozotocin (55 mg/kg IP). Diabetic rats received either eplerenone or PI3k/Akt antagonist (wortmannin) or in combination for 14 days with concurrent administration of isoproterenol (100 mg/kg s.c) on 13th and 14th day. Isoproterenol prompted cardiotoxicity and was demonstrated by a decrease in the maximal positive rate of developed left ventricular pressure, the maximal negative rate of developed left ventricular pressure and an increase in left ventricular end-diastolic pressure along with oxidative stress. Myocardial infarcted diabetic rats exhibited increased myonecrosis, edema, and apoptotic cell death. Treatment with eplerenone significantly improved the redox status of the myocardium. Eplerenone markedly inhibited Bax expression, TUNEL-positive cells, and myonecrosis. On the other hand, the administration of eplerenone and wortmanin did not draw out the same effects, when administered concomitantly or individually. Moreover, the rats treated with eplerenone showed increased expression of PI3K/Akt and decreased its downstream target GSK-3ß. The present study confirms the protective effects of eplerenone on myocardial infarction in diabetic rats via modulation of PI3K/Akt pathway and its downstream regulator GSK-3ß.

...