Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 22719, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123627

RESUMEN

Voice is an essential component of human communication, serving as a fundamental medium for expressing thoughts, emotions, and ideas. Disruptions in vocal fold vibratory patterns can lead to voice disorders, which can have a profound impact on interpersonal interactions. Early detection of voice disorders is crucial for improving voice health and quality of life. This research proposes a novel methodology called VDDMFS [voice disorder detection using MFCC (Mel-frequency cepstral coefficients), fundamental frequency and spectral centroid] which combines an artificial neural network (ANN) trained on acoustic attributes and a long short-term memory (LSTM) model trained on MFCC attributes. Subsequently, the probabilities generated by both the ANN and LSTM models are stacked and used as input for XGBoost, which detects whether a voice is disordered or not, resulting in more accurate voice disorder detection. This approach achieved promising results, with an accuracy of 95.67%, sensitivity of 95.36%, specificity of 96.49% and f1 score of 96.9%, outperforming existing techniques.


Asunto(s)
Trastornos de la Voz , Voz , Humanos , Calidad de Vida , Calidad de la Voz , Acústica del Lenguaje , Trastornos de la Voz/diagnóstico , Acústica
2.
Sensors (Basel) ; 23(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37960386

RESUMEN

Internet of Things (IoT) devices within smart cities, require innovative detection methods. This paper addresses this critical challenge by introducing a deep learning-based approach for the detection of network traffic attacks in IoT ecosystems. Leveraging the Kaggle dataset, our model integrates Convolutional Neural Networks (CNNs) and Gated Recurrent Units (GRUs) to capture both spatial and sequential features in network traffic data. We trained and evaluated our model over ten epochs, achieving an impressive overall accuracy rate of 99%. The classification report reveals the model's proficiency in distinguishing various attack categories, including 'Normal', 'DoS' (Denial of Service), 'Probe', 'U2R' (User to Root), and 'Sybil'. Additionally, the confusion matrix offers valuable insights into the model's performance across these attack types. In terms of overall accuracy, our model achieves an impressive accuracy rate of 99% across all attack categories. The weighted- average F1-score is also 99%, showcasing the model's robust performance in classifying network traffic attacks in IoT devices for smart cities. This advanced architecture exhibits the potential to fortify IoT device security in the complex landscape of smart cities, effectively contributing to the safeguarding of critical infrastructure.

3.
Sensors (Basel) ; 23(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37447729

RESUMEN

The template matching technique is one of the most applied methods to find patterns in images, in which a reduced-size image, called a target, is searched within another image that represents the overall environment. In this work, template matching is used via a co-design system. A hardware coprocessor is designed for the computationally demanding step of template matching, which is the calculation of the normalized cross-correlation coefficient. This computation allows invariance in the global brightness changes in the images, but it is computationally more expensive when using images of larger dimensions, or even sets of images. Furthermore, we investigate the performance of six different swarm intelligence techniques aiming to accelerate the target search process. To evaluate the proposed design, the processing time, the number of iterations, and the success rate were compared. The results show that it is possible to obtain approaches capable of processing video images at 30 frames per second with an acceptable average success rate for detecting the tracked target. The search strategies based on PSO, ABC, FFA, and CS are able to meet the processing time of 30 frame/s, yielding average accuracy rates above 80% for the pipelined co-design implementation. However, FWA, EHO, and BFOA could not achieve the required timing restriction, and they achieved an acceptance rate around 60%. Among all the investigated search strategies, the PSO provides the best performance, yielding an average processing time of 16.22 ms coupled with a 95% success rate.


Asunto(s)
Algoritmos , Inteligencia Artificial , Inteligencia
4.
Bioengineering (Basel) ; 9(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36421084

RESUMEN

Electrocardiogram classification is crucial for various applications such as the medical diagnosis of cardiovascular diseases, the level of heart damage, and stress. One of the typical challenges of electrocardiogram classification problems is the small size of the datasets, which may lead to limitation in the performance of the classification models, particularly for models based on deep-learning algorithms. Transfer learning has demonstrated effectiveness in transferring knowledge from a source model with a similar domain and can enhance the performance of the target model. Nevertheless, the consideration of datasets with similar domains restricts the selection of source domains. In this paper, electrocardiogram classification was enhanced by distant transfer learning where a generative-adversarial-network-based auxiliary domain with a domain-feature-classifier negative-transfer-avoidance (GANAD-DFCNTA) algorithm was proposed to bridge the knowledge transfer from distant sources to target domains. To evaluate the performance of the proposed algorithm, eight benchmark datasets were chosen, with four from electrocardiogram datasets and four from the following distant domains: ImageNet, COCO, WordNet, and Sentiment140. The results showed an average accuracy improvement of 3.67 to 4.89%. The proposed algorithm was also compared with existing works using traditional transfer learning, revealing an average accuracy improvement of 0.303-5.19%. Ablation studies confirmed the effectiveness of the components of GANAD-DFCNTA.

5.
Cancers (Basel) ; 14(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35954350

RESUMEN

BACKGROUND: Prostate cancer is the 4th most common type of cancer. To reduce the workload of medical personnel in the medical diagnosis of prostate cancer and increase the diagnostic accuracy in noisy images, a deep learning model is desired for prostate cancer detection. METHODS: A multi-scale denoising convolutional neural network (MSDCNN) model was designed for prostate cancer detection (PCD) that is capable of noise suppression in images. The model was further optimized by transfer learning, which contributes domain knowledge from the same domain (prostate cancer data) but heterogeneous datasets. Particularly, Gaussian noise was introduced in the source datasets before knowledge transfer to the target dataset. RESULTS: Four benchmark datasets were chosen as representative prostate cancer datasets. Ablation study and performance comparison between the proposed work and existing works were performed. Our model improved the accuracy by more than 10% compared with the existing works. Ablation studies also showed average improvements in accuracy using denoising, multi-scale scheme, and transfer learning, by 2.80%, 3.30%, and 3.13%, respectively. CONCLUSIONS: The performance evaluation and comparison of the proposed model confirm the importance and benefits of image noise suppression and transfer of knowledge from heterogeneous datasets of the same domain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...